
Object Spreadsheets: an end-user development tool
for web applications backed by entity-relationship

data

by

Richard Matthew McCutchen

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c© Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2016

Certified by. .
Daniel Jackson

Professor
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Object Spreadsheets: an end-user development tool for web
applications backed by entity-relationship data

by
Richard Matthew McCutchen

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

There is a growing demand for data-driven web applications that help automate or-
ganizational and business processes of low to medium complexity by letting users
view and update structured data in controlled ways. We present Object Spread-
sheets, an end-user development tool that combines a spreadsheet interface with a
rich data model to help the process administrators build the logic for such applica-
tions themselves. Its all-in-one interface with immediate feedback has the potential to
bring more complex tasks within reach of end-user developers, compared to existing
approaches.

Our data model is based on the structure of entity-relationship models and directly
supports nested variable-size collections and object references, which are common
in web applications but poorly accommodated by traditional spreadsheets. Object
Spreadsheets has a formula language suited to the data model and supports stored
procedures to specify the forms of updates that application users may make. Formulas
can be used to assemble data in the exact structure in which it is to be shown in the
application UI, simplifying the task of UI building; we intend for Object Spreadsheets
to be integrated with a UI builder to provide a complete solution for application
development.

We describe our prototype implementation and several example applications we
built to demonstrate the applicability of the tool.

Thesis Supervisor: Daniel Jackson
Title: Professor

3

4

Acknowledgments
I’d like to thank my advisor Daniel Jackson for giving me the opportunity to do work
I care deeply about and the guidance to make it a success, and my teammate Shachar
Itzhaky for driving the design, implementation, and writing forward when I was stuck
seeking perfection in some limited domain, without which the project never would
have gotten this far. Much of the text of this thesis has been adapted from our tech-
nical report, available at http://dspace.mit.edu/handle/1721.1/100803,
with some revisions; however, almost all of Sections 3.2 and 3.3 and Chapter 7 is new
for the thesis.

This project was supported by a grant from Wistron Corporation as part of a
collaboration between Wistron and MIT’s Computer Science and Artificial Intelli-
gence Laboratory. This project also received partial support from the National Sci-
ence Foundation under Grant No. CCF-1438982, “XPS: FULL: FP: Collaborative
Research: Model-based, Event Driven Scalable Programming for the Mobile Cloud”.

We would like to thank Edward Doong for his help developing example applica-
tions; David Karger and Eirik Bakke for their advice on the design of the system,
positioning our work and the user study; Jonathan Edwards for early discussions; and
various other colleagues at MIT and the anonymous reviewers who provided feedback
on our work and drafts of our papers. We are grateful to Wistron Corporation and
the National Science Foundation for their support of this work.

5

http://dspace.mit.edu/handle/1721.1/100803

6

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Overview . 15
1.3 Demos . 16
1.4 Challenges . 17

1.4.1 Nested Variable-Size Sets . 17
1.4.2 Object References . 19
1.4.3 Binding the Application UI to Data 19
1.4.4 Mutations . 20

2 Data Model 21
2.1 Features . 21
2.2 Concepts and Examples . 21
2.3 Formal Specification . 23

2.3.1 Data Schema . 24
2.3.2 Data Instance . 26

3 Formulas and Computation 29
3.1 Concepts . 29
3.2 Computing With Sets: Examples . 31
3.3 Computation Semantics . 33

3.3.1 Type Checking . 33
3.3.2 Sheet Evaluation: Preliminaries 35
3.3.3 The Sheet Monad and Derivations 35

3.3.3.1 Related Work . 38
3.3.4 Family Evaluation . 40
3.3.5 The Evaluation Algorithm and Computability 44
3.3.6 Dependency Tracking and Incremental Reevaluation 47
3.3.7 Determinism and Catching of Cyclic Dependency Errors . . . 50

3.4 Application Views . 51

4 Transactions 53

7

5 Experiments and Evaluation 55
5.1 Prototype Implementation . 55
5.2 Overview of Example Applications 55
5.3 Example Application: Hack-q . 56
5.4 User Study . 57

6 Related Work 61

7 Conclusions and Future Work 65

Bibliography 69

8

List of Figures

1-1 A simple parent-teacher conference application, with the spreadsheet
on the left and a web UI on the right. 13

1-2 Tracking the used space in each room at a university department based
on space allocation amounts for each role. 17

1-3 An Object Spreadsheet for the space allocation example. 18

2-1 A simple spreadsheet with nested elements and its column hierarchy. 23
2-2 Cell hierarchy of the spreadsheet of Fig. 2-1. 24

3-1 Formula syntax. 30
3-2 Formula type-checking rules. 34
3-3 An example convergence derivation for a computed family in a tiny

spreadsheet. 39
3-4 “Glue” code for family evaluation that makes all of the case distinctions

external to formula evaluation. 42
3-5 Monadic denotational semantics for formulas, part 1. 42
3-6 Monadic denotational semantics for formulas, part 2. 43
3-7 The full evaluation algorithm. 46
3-8 Code to force evaluation of the entire sheet. 47
3-9 The naive incremental evaluation algorithm. 49
3-10 A view model and one instance for scheduling parent-teacher meetings,

with an example rendering. 51

4-1 Procedural language syntax. 54

5-1 Data model, formulas, transaction procedure code, and HTML forms
associated with the simple queuing example “Hack-q” in the case study. 58

9

10

List of Tables

5.1 Sizes of sample applications. 56

11

12

Chapter 1

Introduction

1.1 Motivation

A wide class of data-driven web applications involve routine but non-trivial manipu-
lations of data, to support sharing of information, small-scale social interactions, and
business processes. For example, a school arranging parent-teacher conferences may
want an application that lets the family of each student schedule a meeting with each
of the student’s teachers, avoiding problems such as double-booking (Fig. 1-1).

Organizations with such a need face a dilemma: to adopt an off-the-shelf solution
(which may be a less than perfect match to the requirements); to engage a developer
(which is usually too expensive); or, as is most commonly done, to cobble together
tools such as email, spreadsheets and online forms using form builders like Google
Forms [3] and Wufoo [6] (leaving a considerable burden of manual work and possibly
undesirable risks to data confidentiality and integrity).

Ideally, an organization’s administrators would build a application themselves to
their exact requirements (end-user development), but this approach is not as easy or
as widely used as it could be. General-purpose web application frameworks continue
to demand a high level of technical understanding from their users, even as design
advances over time, such as scaffolding scripts and object-relational mapping, reduce
the amount of code that has to be written. Existing application builders (such as

Teacher Slot Meeting

name hours day time parent slot

•

Flitwick M4-5 • Mon 4:00p • Molly Tue 3:00p

T3-3.30 • Mon 4:30p • Xeno Mon 4:00p

• Tue 3:00p

•

Snape M2-4 • Mon 2:00p • Augusta

• Mon 2:30p • Lucius Mon 2:00p

• Mon 3:00p

• Mon 3:30p

←→

PTC

Mon Tue
2:00p

2:30p

3:00p Molly

3:30p

4:00p

4:30p

5:00p

 Available Occupied Your choice

Figure 1-1: A simple parent-teacher conference application, with the spreadsheet on
the left and a web UI on the right.

13

App2You [27] and Intuit QuickBase [1]) make it easier for people with little or no
programming experience to build data-driven applications of low to medium com-
plexity, offering menu-driven, WYSIWYG, or other visual interfaces to specify the
structure of the information stored and the ways in which users may view and update
it. Such tools are more general than form builders, which allow unprivileged users to
add records but offer very limited options (if any) for them to view and edit records
other than their own.

Many organizations use application builders to great effect, but others continue
to use piecemeal solutions, likely because they are intimidated even by the apparent
investment needed to learn an application builder. And advanced developers often
prefer to use general-purpose frameworks if they have the expertise, even though that
can make the applications harder for new people to maintain later; we suspect this is
because they assume that an application builder will not give them the level of power
and control they want.

We propose that the use of the spreadsheet paradigm in an application builder
can help to overcome both of these problems. In general, spreadsheets are the most
successful example of an end-user development paradigm, and for this reason, are
a common focus of attempts to bring greater ease of use to programming. They
have been extended with capabilities such as more powerful programming languages
[35, 16], user-defined functions [11, 34], and stream processing [38]. The appeal of
spreadsheets arises from several aspects:

• A simple and flexible visual structure for organizing data;

• The use of the very same structure and interface not only for data, but also for
the schema underlying the data and the formulas defining queries on it;

• The continual computation strategy, which allows the impact on example data
to be viewed as formulas are constructed and modified;

• A simple and declarative formula language that provides a smooth learning
curve from simple data transformations, which can be selected visually, to more
complex transformations written with the help of integrated language documen-
tation and immediate feedback on subexpression results.

In the context of building a data-driven web application, one can hope that the
use of spreadsheets and a suitable formula language will:

• Make it easier for end-user developers to progressively construct the schema
they need to fit their data via the single spreadsheet interface, compared to
existing application builders in which developers have to go back and forth
between different screens.

• Provide a smooth path for developers who are comfortable designing a spread-
sheet to hold their data to start building an application around that spreadsheet,
a leap that otherwise might have been intimidating.

14

• Provide a smooth learning curve for developers to express simple to moderately
complex application logic.

• Lead to a programming environment that feels general enough to win the re-
spect of advanced developers, even as it offers significant guidance to novice
developers.

However, adapting the spreadsheet paradigm to the development of data-driven
web applications is not trivial, and in Section 1.4 we outline particular challenges.
In fact, Quilt [10] is an example of a web application builder backed by a tradi-
tional spreadsheet in the style we propose, but it does not address most of these
challenges and consequently supports only the very simplest applications. Our aim
in this project, therefore, has been to retain the essential appeal of the spreadsheet
paradigm while providing good solutions to these challenges.

1.2 Overview

In this thesis, we propose an enhanced spreadsheet tool, called Object Spreadsheets,
that can be used by an end-user developer to build all of the logic for a data-driven
web application. The spreadsheet serves as the standard UI for development and
administrative access to the application data; the developer would design a separate,
customized application UI for regular use by unprivileged users. (Throughout this
thesis, we consistently use the term “developer” for a person who defines the schema
and logic of an application or spreadsheet, however simple, and “user” for a person
who merely reads and writes data.)

In addition to the editable sheet with formulas, Object Spreadsheets supports
stored procedures to define the updates that users of an application can make, and
exposes an API for the application UI to display data and invoke procedures. We
envision combining the tool with a suitable UI builder to provide a complete solution
for application development that requires no prior knowledge of web technologies.
While some parts of the development process (particularly schema design) will remain
challenging for many end-user developers due to the level of abstraction involved, and
form building approaches will remain helpful, we believe that offering a spreadsheet
interface has the potential to bring a range of development tasks within the reach of
end-user developers for a range of realistic target applications and scenarios.

We have implemented a prototype of the spreadsheet tool in the Meteor web
application framework and demonstrated it on a collection of example applications,
building the application UIs directly in Meteor using the exposed API. We have also
conducted a user study to collect feedback from developers who might use such a
tool.

The rest of the thesis describes in more detail how the logic of a data-driven web
application can be built using Object Spreadsheets. Our contributions include:

• An analysis of the challenges of extending the spreadsheet paradigm to support
web application development (Section 1.4);

15

• A data model (Chapter 2) and spreadsheet interface designed to handle web
application data in a way that is natural to end-user developers;

• A simple formula language that supports relational queries (Chapter 3), and a
simple procedural language to support restricted updates (Chapter 4);

• A prototype implementation of the tool (Section 5.1);

• A suite of example applications that demonstrate common difficulties presented
by this application class, and their implementations in our tool (Section 5.2);

• Qualitative feedback from a user study (Section 5.4).

1.3 Demos
Interactive demos of the example applications and a video demonstrating how to
build an application with Object Spreadsheets are available on the project web site at
http://sdg.csail.mit.edu/projects/objsheets/. These materials may
help the reader quickly get a sense of what Object Spreadsheets does before reading
further.

16

http://sdg.csail.mit.edu/projects/objsheets/

A B C D E F
1 room sq footage occupant role alloc free
2 Dungeon Five 480 Sirius Grad student 12 436
3 James Post-doc 20
4 Wormtail Grad student 12
5 Greenhouse Two 561 Bellatrix Visiting Prof 45 476
6 Lily Post-doc 20
7 Remus Post-doc 20
8 role alloc space =VLOOKUP(D5, A$9:B$11, 2)
9 Grad student 12 =B2−sum(E2:E4)

10 Post-doc 20 =B5−sum(E5:E7)
11 Visiting Prof 45

Figure 1-2: Tracking the used space in each room at a university department based
on space allocation amounts for each role. Adding an occupant or room requires
careful adjustment of the formulas. A real implementation would have a separate
table of people like the table of roles above, but we omit this detail to simplify the
example.

1.4 Challenges

In this section we outline the key challenges of extending a spreadsheet to support
web application development and how they are addressed in our design. We point out
a few alternatives and explain why they are inferior. Further discussion of alternatives
and similar systems is given in Chapter 6.

1.4.1 Nested Variable-Size Sets

All but the simplest web applications contain one or more sets of objects and allow
users to add objects to and remove objects from these sets. Many even include two
or more nested levels of such sets. For example, consider an application used by an
administrator to manage the space allocation for a university department, shown in
spreadsheet form in Fig. 1-2. Each person is allocated an amount of space depending
on their role, and people must be assigned to rooms in such a way that each room is
large enough for the people assigned to it. The administrator is constantly facing the
problem of finding a room with enough free space to accommodate the next person,
so he wrote formulas that subtract the total allocated space from the square footage
of each room. Unfortunately, this requires hard-wiring the cell ranges corresponding
to the occupants of each room (E2:E4 and E5:E7). The impact of this is that when
adding a new occupant to a room or when adding a room to the list, the formulas
have to be edited or copied to consider the new cells.

This example illustrates the fundamental challenges of handling variable-size sets
in a spreadsheet. Applications require both per-item computations, such as the lookup
of the allocated space for each person based on their role, and computations over sets,

17

such as summing the allocated space for the occupants of a room. Actually, the latter
computation is also a per-item computation at the room level. To support variable-
size sets, a spreadsheet must be able to:

1. Fit as many items as are needed;

2. Automatically apply per-item computations to added items;

3. Maintain enough information to locate sets and their enclosing items as sizes
change.

These capabilities are difficult to achieve in a traditional spreadsheet, in which data
items and formulas are bound to individual cells in the grid and there is no paradigm
for adapting the structure to programmatic changes in data size. One strategy to
handle two levels of sets is to lay out one level (e.g. the rooms) along one axis, and
another level (e.g. the occupants) along the other. This limits nesting to two levels,
and is also hard to maintain when the inner items are composed of several fields,
as in the example. Another strategy is to move all the inner items to a separate
table with references to the outer items, as in a relational database. But if end-user
developers think of their data as nested, this transformation is an ongoing burden
and in particular risks making schema design even harder than it already is.

In Object Spreadsheets, we solve the problem by abandoning the two-dimensional
grid of cells as the fundamental data model in favor of a richer model that is merely
viewed in a two-dimensional layout. The model is never dependent on the spreadsheet
view for its correct functioning, and the view adapts to arbitrary changes in the size of
the model; there are no issues of “running out of room in the grid”. Some commands
in the spreadsheet UI depend on the state of the view at the time of invocation, but
they ultimately result in a change to the model that is expressed in view-independent
terms.

The model we choose is based on what is historically known as the “hierarchical
data model with virtual records”; it directly supports nested variable-size sets of
objects. Every formula defines a computed field of an object type and is automatically

Room RoleOccupant

name sqFoot name role free title allocSpace

text number text Role number text number

•

Dungeon Five 480 • Sirius Grad student 436 • Grad student 12

• James Post-doc • Post-doc 20

• Wormtail Grad student • Visiting Prof 45

•

Greenhouse Two 561 • Bellatrix Visiting Prof 476

• Lily Post-doc

• Remus Post-doc

room http://localhost:3000/room

1 of 2 05/05/2016 08:52 PM

Room.free =̂ sqFoot - sum[v : Occupant](v.role.allocSpace)

Figure 1-3: An Object Spreadsheet for the space allocation example.

18

evaluated on each object of that type in the sheet, ensuring uniformity. A root object
is available to hold global values and formulas. The spreadsheet view uses the “nested
table” layout with each object type occupying a range of columns and objects of the
same type occupying vertically stacked rectangles, which is common in other tools
[8, 7, 23]. The result for the space allocation example is shown in Fig. 1-3.

1.4.2 Object References

Web applications include relationships between objects, not all of which are well
captured via hierarchy, which leaves a need for object references of some form. In the
space allocation example (Fig. 1-2), this can be seen by the “role” of each occupant,
which refers to a role listed in the table at the bottom. The administrator then wants
to retrieve the allocated space for the role from this table. This can be done with the
VLOOKUP function, but it becomes tedious and error-prone to specify the target
cell range for each such lookup in an application. This approach is the analogue of a
join or subquery on a foreign key in a relational database.

Another approach is to have the occupant’s role cell store a cell reference in string
form, such as "A11" in the case of Bellatrix, and use a formula like =OFFSET(
INDIRECT(D5),0,1) to look up the allocated space. This approach avoids specifying
the cell range of the role table but still requires significant boilerplate, and it fails if
the role table must be moved to allow the room table to grow. Furthermore, to enter
the role of an occupant into the sheet, the administrator has to manually look up the
correct cell reference.

Object Spreadsheets provides object references that are analogous to the "A11"
mentioned above, but since the data model supports objects directly, these references
do not break when the layout changes. So if the developer defines an object type named
Role corresponding to the role table, then references to individual Role objects can
be stored in the “role” column of the occupant table and manipulated like any other
data type. A dot notation is used to access fields of the target object, so the lookup
of the allocated space might be expressed as “=role.allocSpace”. The same notation
is used to access ancestor or child objects in the hierarchy, for example, to retrieve
all occupants of a room to compute the free space. We call these dot expressions
navigations . Finally, Object Spreadsheets lets the developer designate one field of
each object type (defaulting to the first field) as its “display” field, which is used as
a string representation to display and input references to objects of that type in the
spreadsheet. So, by default, references to roles from the occupant table would display
the role name, underlined to remind the developer that they are references.

1.4.3 Binding the Application UI to Data

Any web application builder has to give the developer a way to specify what data
should appear in a given page of the (user-facing) application UI. In existing tools
such as QuickBase and App2You, each page is associated with a particular object
type, and a form building interface is used to specify what fields of the object type
and what tables of related objects to display. The amount of logic inherent in such

19

UI building becomes nontrivial if related objects are nested or are filtered, potentially
depending on parameters chosen by the user on the page.

We propose to harness the benefits of spreadsheets for this task by making each
page merely a stylized view of a dedicated region of the spreadsheet that contains
the data for display. As described in the previous paragraphs, our spreadsheet model
has a hierarchical structure, which aligns well with how user interfaces are normally
built, plus plenty of expressive power to select and assemble data. We discuss further
details in Section 3.4.

1.4.4 Mutations

Finally, the developer must specify the kinds of mutations that users may make to
the application’s state. Suppose the administrator from the space allocation example
wants to allow other users to assign occupants, but not e.g. add rooms or alter their
square footage. In the simplest case, if a web application builder has a flexible means
to bind mutable state directly to a page, the developer could choose to allow edits
to some of the displayed values and creation and deletion of objects that meet the
criteria to appear in tables on the page, perhaps subject to conditions expressed as
formulas. If the page is bound to a view defined by formulas on the source data, then
the natural way to achieve equivalent functionality is to provide default view-update
semantics for formulas with appropriate syntactic forms, as (for example) PostgreSQL
does.

However, some of our target applications, such as Got Milk (see Section 5.2),
have composite mutations that cannot be expressed in this form without complicated
tricks. The most basic, general way to support such mutations is to use stored
procedures and allow users to call certain procedures with arguments of their choice;
the procedures would also receive some built-in parameters such as the identity of
the calling user and the time. This is the approach we currently take. We designed
a small procedural language as extension of the formula language (thus, we hope,
making it easy for end-users to understand). A room assignment procedure might
look like this:

assign (room: Room, name: text, role: Role)

let a = new room.Occupant
a.name = name
a.role = role
check room.free >= 0

20

Chapter 2

Data Model

2.1 Features
The data model for a sheet in Object Spreadsheets is based on what is historically
known as the “hierarchical data model with virtual records”, since we believe this
model offers the best compromise between closeness to an end-user developer’s mental
model of an application (which we imagine to be an entity-relationship model) and
practicality of visualization. The essential features of this model are:

• Attributes, or fields , as the basic unit of data (rather than relational tuples)

• Abstract references between objects

• An ownership hierarchy of objects

Our model also shares some features with the functional data model of DAPLEX [36]
(though we currently do not offer analogues of many of its more advanced features):

• Set-valued fields

• Definition of a computed field on an object type by a formula, which is auto-
matically evaluated once for each object of the type

(There are further similarities to DAPLEX in the formula and procedural languages,
as we will see in the respective chapters.) The two-dimensional grid presentation of the
data model approximates the “nested table layout” and is given by a straightforward
recursive construction.

2.2 Concepts and Examples
In an object spreadsheet, data is arranged in cells . Cells are arranged in columns, and
both cells and columns follow a hierarchy of ownership: each column has exactly one
parent column, and each cell has exactly one parent cell , obeying the commutativity
rule that a cell’s parent always resides in the parent column of the column containing

21

the cell. The only exception is a specially designated root column, which contains
exactly one cell (the root cell); neither the root column nor the root cell has a parent.

Columns are of two kinds: value columns and object columns . The cells in value
columns (value cells) contain primitive values, or references to object cells; cells in
object columns (object cells) do not store data but instead represent distinct object
identities , visualized as bullets. To illustrate this, Fig. 2-1 shows a small data-set of
students enrolled in various classes next to a list of houses at the school. “Class” is
an object column, whereas “name”, “student”, and “house” are value columns. The
root column is at the far left.1 (We will follow the convention that object column
names are capitalized and value column names are written in lowercase.) Child cells
of object cells are conceptually owned by the object; child value cells represent fields
of the object, while child object cells represent nested objects. Value cells are not
allowed to have children.

In the example of Fig. 2-1, “Class” has two child columns, “name” and “student”.
“Class” and “house” are both directly descended from the root column. Fig. 2-1
presents the columns of this spreadsheet as a tree, expressing the ownership relations.
To indicate the column hierarchy visually, we extend the header row so that headers
of object columns stretch across those of child columns. (Our tool offers this as a
display option.)

Because a cell may have children in more than one column, we group them accord-
ing to the column to which they belong. The set of all cells in a given column with a
given parent object cell is called a family and represents the entire value of a field of
the parent object, or its entire set of child objects of a certain type. Fig. 2-2 shows
the tree of cells for the sheet of Fig. 2-1, with families indicated by forked edges.

Notice that, in the default view, object cells are stretched vertically to span over
all rows containing child cells. An entire object and its fields thus occupy a contiguous
rectangular region on the spreadsheet area. Value cells normally do not stretch, but
when fields are constrained to contain a single value per object,2 as in the case of the
“name” field, it is convenient to match their height with that of the object containing
them. The result is a nested table layout.

Conceptually, families are sets. Value cells belonging to the same family all hold
distinct values (although a column can have repeating values as long as they occur in
different families). The value of a cell never changes during its lifetime; while our UI
allows the value in a cell to be edited, semantically such an edit removes the cell and
adds a different one to the same family. The items in a family have no intrinsic order,
but can be sorted in typical ways in the view (e.g., lexicographic order for strings,
chronological order for dates).3,4

The most basic use case for a spreadsheet is data entry. The owner of a spread-

1Consistency would demand a bullet for the root cell, but we hide it because in practice it is
mostly just distracting.

2We envision this constraint being specified as part of the schema, but our prototype does not
yet support this and simply stretches every field that currently contains a single value.

3Sorting has not yet been implemented.
4To simplify the example in Fig. 2-1, we assume that no two students have the same name;

otherwise, a different key has to be used, or a student object column may be introduced.

22

(root)

Class

name student

house

(root)
Class

name student house
• Charms Parvati Gryffindor
• Potions Draco Slytherin

Lee Ravenclaw
• Divination Lavender Hufflepuff

Vincent
• Herbology Neville

Figure 2-1: A simple spreadsheet with nested elements and its column hierarchy.

sheet, or any user otherwise granted full write access to it, may add cells to any
family. Creation of object cells brings to life new families, which are initially empty
and can subsequently be extended with new items.

In addition to manual entries, some columns may be populated by computed values
that are calculated from other entered (or computed) values. Chapter 3 describes
these computations and their semantics.

2.3 Formal Specification

Formally, an object spreadsheet consists of a schema Σ defining the structure of the
data stored; a data instance M containing data conforming to the schema; and a
program Π containing the formulas for computed fields and the stored procedures.
In this section, we describe the structure of the schema and data instance without
distinguishing between state and computed data. We introduce that distinction in
Section 3.3.2 when we formalize the structure of the program.

A central issue in the formalization of the data model is what object references
should consist of, given that Object Spreadsheets allows objects to be computed by
formulas. If we use uninterpreted unique identifiers for all objects and allocate arbi-
trary fresh identifiers for computed objects each time a sheet is evaluated, then “the
same” computed object may receive a different identifier when the sheet is reevaluated
in response to an unrelated change. As a result, in order to produce a meaningful
“diff” of two versions of a spreadsheet or achieve the effect of storing a reference to a
computed object in state data,5 we would need to take extra steps to identify com-

5This might seem on its face to be an unlikely thing to do, but developers may choose to define a

23

(root)

•

“Charms” “Parvati”

•

“Potions” “Draco”

“Lee”

. . . “Gryffindor”

“Slytherin”

“Ravenclaw”

“Hufflepuff”

Figure 2-2: Cell hierarchy of the spreadsheet of Fig. 2-1 (only some of the cells are
shown). Forked edges indicate cell families.

puted objects based on their role in the sheet. Instead, we design object references
to encapsulate exactly the necessary information to identify what we consider to be
“the same” object on any version of a spreadsheet, so these tasks do not require any
extra effort.6

Specifically, each object of a given type T (other than the root object) has an im-
mutable key that uniquely identifies it among its parent object’s children of type T .
Objects in two instances of the spreadsheet that have the same type, the same parent
and equal keys are considered to be “the same” object (though possibly in different
states). Our design for computed objects (Section 3.1) is such that they inherently
have user-defined keys, although one could imagine a system in which keys would be
automatically generated in some other stable way. In contrast, the keys for state ob-
jects are normally persistent unique identifiers known as tokens , which are randomly
generated when objects are created and are not user-visible. Our data model also
supports state objects with user-defined keys, but our implementation currently does
not offer this option because developers found it too hard to understand; we may
revisit the issue at some point.

2.3.1 Data Schema

Our tool provides a set of primitive types P, including “text”, “number”, “boolean”,
etc. Internally, it also uses a type T corresponding to an infinite, uninterpreted set of
tokens , as mentioned above. A function V is initially defined on each of these types,
giving the set of values of that type. If T is a type, we use x : T to mean that x is of

view that provides a more convenient representation of underlying data and then build other parts
of an application on top of the view, which would include storing references to the computed objects
in the view.

6This design increases the learning curve in this section, but the semantics in Section 3.3.2 would
be completely unmanageable without introducing it at some point, and introducing it here appears
to leave the least mess.

24

type T , i.e., x ∈ V(T). For convenience in some parts of the formalization, we assume
that each value is tagged with its type, so that V(T) and V(T ′) are disjoint for every
two distinct types T and T ′. We also assume a total order on each type, given by a
function systemOrder that takes a finite set of values of the same type and returns a
sequence with the values in ascending order.7

Definition 1. A schema Σ consists of:

• A finite set C of columns , partitioned into a set OC of object columns and a set
VC of value columns. (Formally, the elements of C are uninterpreted identifiers
that index the columns of the schema. Such identifiers may be reused across
schemas, which may be useful when describing a schema editing operation that
leaves all but a few columns unaffected. For convenience, we refer to them
simply as columns when the meaning is clear.)

• A root column R ∈ OC and a parent function p : C \ {R} → OC that arranges
the columns in a tree rooted at R. We write D ; C to say that D has a child
C (that is, p[C] = D), and also denote C+ = C \ {R}, OC+ = OC \ {R}.

• A function name : C+ → string giving a name to each non-root column.

• A type assignment type : C → T (where T = P ∪ OC) such that type[C] = C
for every C ∈ OC.

• A set OCK ⊆ OC+ of keyed object columns (i.e., object columns with user-
defined keys8) and a function kc : OCK → VC mapping each such column C to
a key column kc[C] that is one of its children. Let KC = kc[OCK] be the set
of key columns. We define the key type ktype[C] of a column C ∈ OC+ to be
type[kc[C]] if C ∈ OCK or T otherwise.

As suggested by the definition of T, each object column C serves as a type, where
V(C) is the set of references of the proper format to refer to objects in the column.
A reference to an object is composed of the keys of the object and of its ancestors.
That is, we define V on OC as follows:

• V(R) = {r} where r is a unique root object .

• V(C) = V(p[C])×V(ktype[C]) for C ∈ OC+. We define the projections p(x, k) =
x and k(x, k) = k where (x, k) ∈ V(C).

7While the formula language (if extended with ordered lists) could offer any number of explicit
sorting functions, one may as well make as reasonable a choice of systemOrder as possible, which we
suggest would consist of the traditional orders on primitive types and lexicographic order on object
references, but we do not assume this.

8Recall from the beginning of Section 2.3 that computed object columns will always be keyed,
while state object columns normally will not be, once we introduce the distinction between state
and computed data in Section 3.3.2.

25

V can be thought of as an inductive type family, so that if there are cycles in the
relation on object columns induced by p and ktype, then V is simply empty for the
affected columns. Of course, such a cycle is probably a mistake and should be reported
to the developer, but we want to provide as much well-defined functionality as possible
in the (hopefully temporary) presence of errors of any kind.

2.3.2 Data Instance

Definition 2. A family identifier for a given schema Σ is a tuple of the form 〈C, d〉
where C ∈ C+ and d : p(C).

Definition 3. An instance M of a schema Σ consists of:

• A finite set F of identifiers of families that are defined in the instance.

• A family content function fc that maps each 〈C, d〉 ∈ F to a finite subset of
V(C).

The set of objects that exist in the instance is defined by:

objs = {r} ∪
⋃

C∈OC+

〈C,d〉∈F

fc[〈C, d〉]

An instance must satisfy the following properties:

• All families belong to existing objects: for every 〈C, d〉 ∈ F, d ∈ objs.

• Families in object columns can only contain objects with the correct parent: if
C ∈ OC+ and x ∈ fc[〈C, d〉], then p(x) = d.

• Keys appear in the key columns: for every C ∈ OCK and every d : C such
that d ∈ objs, 〈kc[C], d〉 ∈ F and fc[〈kc[C], d〉] = {k(d)}. (This property, in
combination with the first, fully determines the content of key columns.)

The correspondence between this definition and the informal one of Section 2.2
is that the sheet contains the cell of the root object r, plus for each 〈C, d〉 ∈ F and
x ∈ fc[〈C, d〉], a cell of value x in column C whose parent is the cell representing d (as
a member of fc[〈p[C], p(d)〉], except for d = r, which does not belong to a family). The
value of an object cell is a reference to the object itself, which is why type[C] = C for
C ∈ OC; this convention allows the same definition of down navigation (Section 3.1)
to produce the behavior we want for both value columns and object columns. An
object with a given reference o : C exists in the instance if and only if o = r or o
appears in the family 〈C, p(o)〉 of its putative parent p(o).

While an object column C contains exactly the objects of type C that exist, a
value column C ′ such that type[C ′] = C may contain arbitrary references of type C
to objects that do or do not exist; we call references to objects that do not exist
broken. Our system does not provide a way to create or compute a broken reference

26

directly, but an existing reference can become broken when the target object ceases to
exist. The reference becomes usable again if an object with the same parent and key
comes into existence; this can happen if the key was user-defined, but normally cannot
happen if it was a randomly generated token, except perhaps via an “undo” command.
Attempting to follow a broken reference raises an error, but broken references can still
be counted and tested for equality. While the alternatives of treating broken references
as if their targets were empty or even immediately deleting references when they
become broken might lead to the desired result in some applications, the behavior we
choose seems least likely to result in surprises.

Definition 4. An instance is said to be complete in a column C ∈ C+ if 〈C, d〉 ∈ F
for every d : p[C] such that d ∈ objs.

Normally, we expect an instance to be complete in all columns. However, in
Chapter 3, we will discuss the automatic computation of families from formulas,
which results in an instance that is incomplete anywhere this computation fails.

27

28

Chapter 3

Formulas and Computation

3.1 Concepts
Formulas are assigned to columns rather than to individual cells as they are in tra-
ditional spreadsheets. If a column is assigned a formula, it will not admit data entry
by typing into the cells—instead, cells in that column are populated by evaluating
a formula that computes values based on other data in the spreadsheet. We refer
to these columns as computed columns , to distinguish them from columns containing
mutable state, which we call state columns . The formula of a computed column is
evaluated once for each object cell in the parent column (known as the context object
cell for the purpose of the evaluation), generating a family of result cells with that
object cell as parent.

The most important aspect of formulas in spreadsheets is access to data in other
cells of the spreadsheet. Excel and other traditional spreadsheets use a row-column
coordinate notation that is either absolute or relative. Since our data model is hier-
archical, data access must follow this hierarchy—a process we refer to as navigation.

With a particular cell as the starting point—by default, all navigations start at
the context object cell—we distinguish two types of navigation:

• Up navigation—following the parent relationship to go to one of the cell’s an-
cestors.

• Down navigation—retrieving all children of the cell in a particular child column,
which comprise a child family of the starting cell. In general, a down navigation
results in a set of cells. Since developers like to use short column names that
describe the meaning of a column with respect to its immediate parent (e.g.
“name”, “age”), we allow each single navigation to go down only one level so
that its meaning is clear. (To go down more than one level, the developer can
chain navigations.)

For simplicity of design, all formula expressions evaluate to sets, following the
style of Alloy [25] and DAPLEX [36]. Navigation is done using the dot notation:
cell.targetName, where targetName is the name of the ancestor or child column, and
is naturally lifted to sets by taking the union of the results of the navigation on each

29

expr ::= var-name // local variable
| (expr.)? column-name ([expr])? // column navigation
| literal
| { expr∗ } // union
| op expr // unary operator
| expr op expr // binary operator
| function-name (expr∗) // built-in function invocation
| { var-name : expr | expr } // filter comprehension
| sum[var-name : expr](expr) // sum comprehension

literal ::= $ // root cell literal
| number // singleton number literal
| "string" // singleton string literal
| true | false // singleton Boolean literal

Figure 3-1: Formula syntax.

element. targetName is resolved to a column when the formula is entered, and the
formula is automatically updated if the column is later renamed by the developer,
much as a cell reference in a traditional spreadsheet formula updates if the target cell
moves.

To resolve the column name in a navigation, we must know the type of the start-
ing cell, therefore formulas are type-checked when they are entered. Type-checking
ensures that every subexpression evaluates to a homogeneous set, meaning that all
elements are all of the same type (which may be a primitive type or a reference type).
As in Alloy, scalar values are represented by singleton sets.

Formula expressions are drawn from a language whose syntax is described in
Fig. 3-1. It includes set equality (=) and inclusion (in) operators, which can also be
used for scalar equality and scalar membership in a set; a set comprehension notation
{var : set | pred} that filters an existing set using a predicate; and various numeric,
boolean, date, and set-related operators and functions (+, -, <, >, &&, count, etc.).

Our tool currently supports a sum construct that binds a variable, for reasons
discussed in Section 3.2 example 3. The notation is inspired by the mathematical

∑
notation: ∑

p∈Part

p.price ∼ sum[p : Part](p.price)

When a formula is evaluated, an implicit variable this is bound to the context
object (the parent of the family being computed). This allows for more compact for-
mulas when accessing fields of the same object and of containing objects. For example,
if we were to add a column named size as a child column of Class, and assign to it
the formula count(students), the formula would evaluate to the number of stu-
dents in each class. In contrast, the formula count($.Class.students) would
evaluate to the overall number of students (using the special literal $ that refers to
the root cell).

A formula may be assigned:

• To a value column, in which case each value in the set returned by the formula

30

generates a cell with that value, or

• To an object column, in which case each value generates an object (with a
unique identity), and the value itself is stored as a single child in a designated
key column. One must keep in mind that the formula context is the parent
object column, not the object column containing the formula (which is only
populated after the formula has been evaluated). This feature is analogous to
the “COMPOUND OF” function in DAPLEX [36].

Since a key column is associated with the formula of its parent object column, it
cannot have a formula of its own.

3.2 Computing With Sets: Examples
We present a series of examples to shed light on how our data model and formula
language accommodate the types of set computations that commonly occur in web
applications.

1. Given a set members of members of a research group (as references to Person
objects), compute the set of their offices (assumed to be a field office of each
person). We handle this by allowing a navigation expression on a set of object
references, members.office, which takes the union of the result for each
object in the set.

2. Compute the set of cars currently available in a car sharing service, assuming
that each car has an available field. This could be achieved by defining a
computed field on each car that contains a reference to the car itself if it is
available or otherwise the empty set:

Car.selfIfAvailable =̂ if(available, Car, {})

and then navigating from the set of all cars ($Car) to this field:

availableCars =̂ $Car.selfIfAvailable.

But this type of filtering (like “WHERE” in SQL) is so common that we believe it
is worth providing the special syntax {c : $Car | c.available}. In the
future, we plan to consider other syntaxes that may be easier for new developers
to understand, perhaps drawing inspiration from Microsoft’s LINQ [5], which
is a better fit for our set-based language than SQL.

3. Given a set members of members of a research group, compute their average
age (assumed to be a field age of each person, possibly itself computed from
the date of birth). Currently, the navigation expression members.age drops
duplicate ages and returns a set, so we cannot accurately compute an average
based on members.age. We would like to allow members.age to return

31

a multiset, which could simply be passed to an aggregation function, but it’s
unclear what should happen when a formula returning a multiset is assigned
to an object column to generate child objects. For now, we provide a special
aggregation syntax that binds a variable, so the average age formula would look
like:

averageAge =̂ sum[m : members](m.age) / count(members)

4. Suppose we have a set of users, each with a location field giving their current
location and a favorites field containing a set of references to their favorite
restaurants (Restaurant objects). When a user visits the web application, we
wish to show the distance from their current location to each of their favorite
restaurants (assuming that Restaurant also has a location field). The
distance depends on both the user and the restaurant, so it can’t be defined
simply as a computed field on one or the other. One way we can represent the
distances is to change the representation of each user’s favorites from a set of
Restaurant references to a set of nested Favorite objects, each of which
contains a Restaurant reference. Indeed, Object Spreadsheets provides a
command to perform this conversion. When a user adds or removes a favorite,
we create or delete a Favorite object rather than just adding or removing a
Restaurant reference. We can then define a distance field on Favorite
using a formula like:

Favorite.distance =̂ dist(User.location, restaurant.location)

(imagining for the purpose of this example that dist is built-in).

5. Given a set of users and their current locations, when a user logs into the car
sharing service (example 2 above), show the distance to each available car.
We potentially need a distance for each pair of a user and a car. As in the
previous example, we could represent the distance as a distance field on a
UserCarInfo object type that is a child of User. But unlike in the previous
example, users do not manually add cars to a list that they want to consider, so
we cannot create the UserCarInfo objects that way. Instead, we can make
the UserCarInfo object type computed, with a formula that retrieves the
set of all available cars. Then, for each user, we will automatically get one
UserCarInfo object per available car. (In fact, the previous example could
alternatively be handled with a computed object type as well.)
Computed object types can express the same kinds of complex queries that
SQL subqueries can, but they maintain the local nature of computation of
the spreadsheet paradigm. We suggest that requiring complex queries to be
broken down using multiple computed object types may be helpful for their
maintainability.

6. Given a set members of members of a university department, with a field city
giving the city in which each lives, compute the set who live in each city for

32

further analysis. In SQL, this would be done with “GROUP BY”. In Object
Spreadsheets, one would define a top-level computed object type CityGroup
with formula members.city, which would generate one CityGroup for each
city with at least one resident. One would define a computed field for the set
of people in the city as follows:

CityGroup.residents =̂ {m : members | m.city = city}

Further computed fields can then be added to CityGroup. This boilerplate
is tolerable for now; we eventually plan to add a special “group by” feature to
automate it.

3.3 Computation Semantics

3.3.1 Type Checking

Each time the schema or a formula is modified, the system type-checks all formulas.
Specifying the type of a computed column is optional; if unspecified, the type will be
inferred during each type-checking pass. This inference is currently implemented as
a simple traversal of the formula, recursing on references to other columns (coinci-
dentally, analogous to inference of function return types in TypeScript), so it fails if
there is a cycle of (static) dependencies among columns of unspecified type; in that
case, the developer can break the cycle by specifying one of the types. For as long
as a column’s formula cannot be type-checked or fails to match the type specified by
the developer (if any), evaluation of families in the column is postponed.

The formal type-checking rules are listed in Fig. 3-2. The schema Σ is fixed
and implicit throughout the rules. Formulas are checked in a type environment
Γ = {this 7→ C} for the appropriate parent column C. The type environment
for subformulas may be extended by variable bindings, as in the set comprehen-
sion and sum constructs. The helper function lu gives the name lookup rules for
up and down navigation. In surface syntax, a subexpression consisting of an identi-
fier id can either refer to a local variable in Γ or represent a navigation this.id (if
lu(Γ[this], id) 6= {}); ambiguity between the two is an error. The this variable
cannot be referenced explicitly in surface syntax; as a special case, to refer to the
context object itself, we require the developer to write its column name C (which
represents the no-op up-navigation this.C) to remind readers of the formula of its
type. For simplicity, in the type-checking rules and the remainder of the semantics,
we work with the abstract syntax in which identifiers that represent navigations on
this have already been expanded into those navigations. Note that an ambiguous
navigation in the abstract syntax (for which lu returns more than one interpretation)
is ill-typed according to the NAV rule.

When the system parses a formula, it replaces identifiers that refer to columns
with the internal column IDs; when the formula is later displayed, these IDs are
replaced by the current column names. In this way, columns can be renamed without
breaking existing formulas. Parsing of a navigation e.id fails if id does not refer to a

33

lu(C, id) = {〈D, ↓〉 | C ; D, name[D] = id} ∪ {〈B, ↑〉 | B ;∗ C, name[B] = id}

Γ ` e : C lu(C, id) = {〈D, dir〉}
(NAV)

Γ ` e.id : type[D]

v ∈ Γ (VAR)
Γ ` v : Γ[v]

∀i ∈ {1..n}. Γ ` ei : T
(SET)

Γ ` {e1,e2, · · ·,en} : T

Γ ` e1 : T, e2 : T (=/IN)
Γ ` e1 = e2 : bool, e1 in e2 : bool

Γ ` e1 : numeric, e2 : numeric (+)
Γ ` e1 + e2 : numeric

Γ ` e : T Γ, v : T ` c : bool (SET-COMP)
Γ ` { v : e| c} : T

Γ ` e : T (COUNT)
Γ ` count(e) : numeric

Γ ` e : T Γ, v : T ` a : numeric (SUM)
Γ ` sum[v : e](a) : numeric

(LIT)
Γ ` true : bool, false : bool, num : numeric, $: R

Figure 3-2: Formula type-checking rules. R denotes the root column.

unique column or the type of e cannot be determined in order to resolve id. The same
idea applies to the determination of whether a subexpression consisting of an identifier
represents a local variable or a navigation on this. Once parsed, a formula continues
to work even if identifiers in its (current) display representation are ambiguous with
respect to the current schema, but the developer will not be able to save an edited
version of the formula in which the ambiguity is still present. We do not model these
aspects of the system behavior in the formal semantics.

Since all formula values are sets, a judgment Γ ` e : T means that expression e
evaluates (in environment Γ) to a set of elements of type T . Each built-in operator
and function has its own typing rule. Many have fixed parameter and return types,
but not all: for example, the = operator takes two parameters of the same (arbitrary)
type and its return type is bool. The rules for =, in, +, and count are shown as
examples. Operators that require scalar arguments, such as +, check at runtime that
their arguments are singleton sets.

34

3.3.2 Sheet Evaluation: Preliminaries

In this section, we begin the formal semantics for sheet evaluation. While the hier-
archical structure of the sheet and some of the language constructs are specific to
Object Spreadsheets, a large chunk of the semantics would be the same for any sys-
tem of units that are reactively defined in terms of one another. No one seems to
have bothered to publish a formal semantics for a spreadsheet before except for the
Deductive Spreadsheet [12]; we discuss this comparison in Section 3.3.3.1.

First we need a few definitions, building on the components of a schema defined
in Section 2.3.1.

Definition 5. A program Π for a schema Σ consists of a set CC ⊆ (VC \ KC) ∪
OCK of computed columns and a function Φ : CC → expr giving the formulas of
these columns. (A program may also include stored procedures, which are described
informally in Chapter 4.) The set of state columns is defined by SC = C+ \ (CC ∪
KC). Families in state columns and computed columns are called state families and
computed families , respectively. To avoid cases where a computed object disappears
and descendant state data becomes orphaned, programs must have the property that
no state column is a descendant of a computed column.

Definition 6. A program Π is well-typed for a schema Σ if the formula for each
computed column C returns the type of its formula output column foc[C], assuming
that this has the type of the parent column p[C]. The formula output column is C
itself if C is a value column, or the key column kc[C] if C is a keyed object column.
Formally, for each C ∈ CC, we must have {this 7→ p[C]} ` Φ[C] : type[foc[C]]
according to the rules in Section 3.3.1. (Our system actually allows the type of foc[C]
to be left unspecified in the schema and sets it to the type inferred for the formula as
described in Section 3.3.1, but we do not model that process here.)

To focus on the important issues, we assume in this discussion that the entire
program is well-typed, though our implementation simply evaluates all well-typed
computed columns.

Definition 7. A state instance M of a schema Σ with a program Π is an instance that
is complete (Definition 4) in all state columns and contains no computed families.

Evaluation begins from a state instance M of a schema Σ with a well-typed pro-
gram Π. We consider the schema and program fixed and leave them implicit; we do
not discuss properties that involve more than one variant of a schema or program
here, though some would be straightforward to prove.

3.3.3 The Sheet Monad and Derivations

The simplest approach to sheet evaluation semantics would be to write an evaluation
function that takes a family identifier and recurses when the formula reads another
family. It has the advantage that determinism is obvious, but two problems:

35

1. The definition would be logically unsound due to potentially infinite recursion
among families.

2. It does not give us the family dependencies explicitly, which we need in order
to formalize evaluation algorithms that cache results at the family level, detect
cyclic dependencies (Section 3.3.5), and reevaluate the sheet incrementally based
on dependencies (Section 3.3.6).

Fortunately, it’s almost as easy to write an evaluation function that returns a compu-
tation in a sheet monad in which reading another family is a built-in operation. This
approach solves both problems and still leaves determinism (fairly) obvious.

We define an inductive type Tsheet of monadic computations of return type T , as
follows:

Tsheet := return T | err | bindRead(〈C, d〉, f)

The intuitive meaning of the computation return v is to return v immediately, while
err raises an error. bindRead(〈C, d〉, f) reads the value of the family 〈C, d〉, which
must be a finite set of elements of type type[C], and passes this set to f , which
must return a follow-up computation of type Tsheet. (That is, the type of f must be
FiniteSet(type[C])→ Tsheet.)

To execute a computation, if it has the form bindRead(〈C, d〉, f), we simply pass
the value of the family 〈C, d〉 to f and repeat the process on the follow-up com-
putation until we ultimately reach a computation of the form return v or err. By
defining the type Tsheet as inductive in a metalanguage that places the appropriate
well-foundedness constraints on recursive definitions, we enforce that this process ter-
minates after finitely many steps. We say computations are locally terminating : local
in the sense that we are considering only the computation itself and not the process
used to determine the value of each of the families it reads. If we needed to allow
locally nonterminating computations, we could define Tsheet as coinductive.

We can define both a read operation (which simply returns the value read) and
the monad bind operation in terms of bindRead as follows:

read(〈C, d〉) = bindRead(〈C, d〉, (λv.return v))

bind(c, g) =

g(v), c = return v

err, c = err

bindRead(〈C, d〉, (λv.bind(f(v), g))), c = bindRead(〈C, d〉, f)

In the next section, we will define a function famcompM that gives the compu-
tation of type FiniteSet(type[C])sheet used to actually evaluate a family 〈C, d〉 to a
set of elements of type[C]; it makes the necessary case distinctions among state, key,
and computed families and evaluates formulas in the appropriate way for computed
families. But first we describe the rest of the sheet monad framework, which is inde-
pendent of the actual definition of famcompM .

We’d like to view the local execution trace of a computation c ∈ Tsheet as a sequence
of family reads, with the intervening pure computation being implicit in the initial

36

construction of c and the functions f passed to bindRead. To build such a trace,
we need to know the value of each of the families read. But we still cannot define
a function to determine the value of a family, because of the unrestricted recursion.
Instead, we define an inductive type family M ` 〈C, d〉 ⇓ v, members of which are
derivations that the family 〈C, d〉 converges to the value v, and an analogous inductive
type family M ` c ⇓ v for computations. (We use notation as if M ` 〈C, d〉 ⇓ v and
M ` c ⇓ v were inductive predicates, but they must actually be inductive type
families because we will write algorithms that inspect the structure of derivations.)
A derivation of M ` c ⇓ v embeds derivations that the families read by c converge
to particular values. In turn, a derivation of M ` 〈C, d〉 ⇓ v wraps a derivation of
M ` famcompM(〈C, d〉) ⇓ v. The full convergence rules:

M ` famcompM(〈C, d〉) ⇓ v
(Family)

M ` 〈C, d〉 ⇓ v
M ` c→∗ return v (Return)

M ` c ⇓ v∧n
i=1

(
M ` ci−1 → ci

)
(Multistep)

M ` c0 →∗ cn
M ` 〈C, d〉 ⇓ v

(Read)
M ` bindRead(〈C, d〉, f)→ f(v)

On the flip side, we have coinductive type families M ` c ⇑ and M ` 〈C, d〉 ⇑ of
derivations that a computation or a family diverges . Divergence is the opposite of
convergence and includes both errors and nontermination due to an infinite regress
of dependencies, cyclic or not.1 As mentioned above, every computation must reach
return v or err after reading finitely many families (again, not considering the eval-
uation of each of those families), so we do not need a divergence rule for a single
computation taking an infinite sequence of Read steps. But the local termination
property of a computation is moot if it reads a family that diverges. The divergence
rules:

M ` famcompM(〈C, d〉) ⇑
(FamilyDiv)

M ` 〈C, d〉 ⇑
M ` c→∗ err (Err)
M ` c ⇑

M ` c→∗ bindRead(〈C, d〉, f) M ` 〈C, d〉 ⇑
(ReadDiv)

M ` c ⇑
For convenience, we sometimes speak of the outcome of a computation or a family as
being either ⇓ v or ⇑.

Complexity in the derivation rules costs us throughout the metatheory of deriva-
tions, while most of this metatheory is independent of the definition of famcompM , so
we keep the derivation rules to a bare minimum and move as much of the complexity
to the definition of famcompM as possible. We go ahead and give the definitions that
motivate the structure of the rules, although we do not use them until Section 3.3.6:

Definition 8. The local part of a derivation H consists of the steps from the conclu-
sion up to, but not including, any Family or FamilyDiv steps (other than the conclusion
itself if H is a derivation about a family). The dependency list of H, denoted D(H), is
the list of unique family identifiers that appear in the hypotheses of Read and ReadDiv

1We will see in Section 3.3.5 that an acyclic infinite regress of dependencies cannot occur in the
current system, but can occur with an extension that we are considering.

37

steps in the local part, in the order of their first appearance in the sequence of Read
steps followed by the divergence hypothesis of ReadDiv (if applicable).

An example convergence derivation for a tiny spreadsheet is shown in Fig. 3-3.
Here width and height are state columns and area is a computed column with the
formula width× height. The state instance M is given by M.fc[〈width, r〉] = {4} and
M.fc[〈height, r〉] = {5}. For this example, the definition of famcompM given in the
next section reduces to the following:

famcompM(〈C, r〉) = return M.fc[〈C, r〉] for C ∈ {width, height}

famcompM(〈area, r〉) =

bindRead(〈width, r〉, λx.bindRead(〈height, r〉, λy.return {s(x) · s(y)}))
Here s returns the single element of a singleton set; to simplify the example, we are
ignoring the possibility of an error in s.

The derivation rules have the following important property:

Proposition 1. With respect to a given state instance M , every computation c
and family 〈C, d〉 has a unique derivation of either convergence or divergence, i.e.,
computations are deterministic.

Proof. The basic idea is that starting from a computation c, the unique derivation will
take as many steps as possible using the Read rule (as mentioned above, an infinite
sequence of steps is impossible) to arrive at a computation c′, then apply Return, Err,
or ReadDiv depending on whether c′ is of the form return v, err, or bindRead(〈C, d〉, f)
where no derivation of M ` 〈C, d〉 ⇓ v exists. In the ReadDiv case, coinduction is
used to fill in the derivation of the hypothesis M ` 〈C, d〉 ⇑ of ReadDiv. However,
it’s in general undecidable whether a derivation of M ` 〈C, d〉 ⇓ v exists, so the
existence proof is nonconstructive. A convergence or divergence derivation for a
family 〈C, d〉 is simply a wrapper around a convergence or divergence derivation for
famcompM(〈C, d〉). The existence and uniqueness proofs can be formalized using
a mixture of induction and coinduction; they contain no ideas specific to Object
Spreadsheets, so we do not go into further detail.

When we speak informally of the dependencies of a family 〈C, d〉 with respect to a
state instance M , we mean the families in the dependency list of the unique derivation
of M ` 〈C, d〉 ⇓ v or M ` 〈C, d〉 ⇑.

3.3.3.1 Related Work

The general idea to use a monad to break direct recursion in a definition while still
writing it in a similar style is first clearly articulated by Danielsson [18], though some
previous work uses the technique. In the “partiality monad” framework of [18], a
monadic computation of return type T (including all recursive calls) reduces to a
partial value of the coinductive type

T⊥ := return T | later T⊥.

38

width height area
4 5 20

(a) The spreadsheet.

empty list
(Multistep)

M ` cw →∗ return {4}
(Return)

M ` cw ⇓ {4}
(Family)

M ` 〈width, r〉 ⇓ {4}
(Read)

M ` ca → c′a

empty list
(Multistep)

M ` ch →∗ return {5}
(Return)

M ` ch ⇓ {5}
(Family)

M ` 〈height, r〉 ⇓ {5}
(Read)

M ` c′a → return {20}
(Multistep)

M ` ca →∗ return {20}
(Return)

M ` ca ⇓ {20}
(Family)

M ` 〈area, r〉 ⇓ {20}

cw = famcompM(〈width, r〉) = return {4}

ch = famcompM(〈height, r〉) = return {5}

fa = λx.bindRead(〈height, r〉, λy.return {s(x) · s(y)})

c′a = fa({4}) = bindRead(〈height, r〉, λy.return {4 · s(y)})

ca = famcompM(〈area, r〉) = bindRead(〈width, r〉, fa)

(b) The convergence derivation H of 〈area, r〉, with auxiliary definitions as shown to reduce
clutter in the proof tree. The local part is in the dotted rectangle. The dependency list
D(H) is (〈width, r〉, 〈height, r〉).

Figure 3-3: An example convergence derivation for a computed family in a tiny spread-
sheet.

39

A partial value consists of zero or more later steps followed by a return value, or an
infinite stream of later steps if the computation does not terminate. We could evaluate
families using this framework by defining read(〈C, d〉) = later famcompM(〈C, d〉); this
would solve the recursion, but it would inline the evaluation of a family’s transitive
dependencies into a single partial value and not give us the dependencies explicitly.
The fundamental difference in the sheet monad is that we keep bindRead(〈C, d〉, f) as a
constructor of Tsheet and write derivation rules that expose the dependency structure.
We also add an err constructor, but it could be folded into return using a Maybe type
as in [18] if we wished.

The only previous formal semantics we could find for a spreadsheet system is
for the Deductive Spreadsheet by Cervesato [12]. It is based on the concept of an
environment η, an assignment of values to the cells of the sheet in which cells may
take the uncalculated value ⊥. A function Ë is defined that takes an old environ-
ment η and produces a new environment η′ in which each cell’s formula is evaluated
based on the values in η; this evaluation uses special definitions of the language con-
structs that propagate ⊥. Then Ë is iterated starting from the empty environment
η0 = λc.⊥ to produce environments Ëi(η0). Since sheets are finite, cell references in
formulas are static, and cyclic dependencies are disallowed, the iteration must reach
an environment Ën(η0) in which no cells are uncalculated ([12] section 3.2.1). If these
restrictions were not in place, one could still define an (in general uncomputable) final
environment

η̂(c) =

{
x, ∃i : Ëi(η0)(c) = x 6= ⊥
⊥, otherwise.

The Deductive Spreadsheet also supports logic programs, which are automatically
broken into strata, each of which acts as a single unit in the sheet evaluation process
([12] section 5.5.2).

Our formulation is simpler in that it uses inductive types to abstract away the
iteration and a monad to abstract away the propagation of ⊥ in the definitions of
the language constructs. One might feel that the difference is unimportant because
the behavior is intuitively clear based on either formulation. Indeed, the behavior
may be intuitively clear without a formal semantics at all. The objective of a formal
semantics should be to make completely formal proofs easiest to write (if one were to
pursue them, e.g., using a proof assistant), and our formulation is certainly preferable
in that regard.

Cervesato does discuss a semantics based on an inductive predicate for the logic
programs embedded in a deductive spreadsheet ([12] section 5.3.5), and it is possible
to convert a spreadsheet to a logic program, but we cannot consider Cervesato to
have applied this semantics to the entire spreadsheet.

3.3.4 Family Evaluation

With the sheet monad in place, we proceed to give the definition of famcompM in
Fig. 3-4. The definition uses Haskell-style “do” notation, in which “do x ← c1; c2”
denotes bind(c1, λx.c2), and so forth, where bind is as defined in the previous section.

40

This “glue” code makes all of the case distinctions that are external to formula evalu-
ation: state families are looked up from the state instance, key families are generated
automatically, and computed families are evaluated using their formulas, with keys
converted to computed object references in computed object columns (a conversion
that is reversed in those objects’ key families). checkObj(d) is a helper function that
checks that the object d exists in the evaluated sheet. The definitions of checkObj and
the generation of key families in famcompM match the definitions of M.objs and the
key families in M with respect to state columns, but also work for computed columns.

For state families, famcompM consults M directly, which is why M is passed as
an argument; since M.F contains the correct set of families, a call to checkObj would
be redundant and we omit it. In all other cases, famcompM delegates to compute,
which may read families via the monad but does not access M directly. (This fact
will become important in Section 3.3.6.)2

As mentioned in Section 2.3.2, there is no way to compute a broken reference
directly, so the only way a call to famcompM on a family of an existing object can
lead to a checkObj failure (or the “C ∈ SC and 〈C, d〉 /∈ M.F ” case) is if a formula
attempts to follow a reference that was previously stored in a state column and has
since become broken.

To complete the definition of famcompM , we define the structurally recursive de-
notation function JeKσ for formulas in Fig. 3-5 and Fig. 3-6. σ is an environment
that maps local variables to their values, which must be finite sets. The definition is
written in terms of a “parallel bind” operation, pbind((ci)

n
i=1, f), that takes a list of

subcomputations and passes the list of their results to f . We extend the “do” notation
so that a use of ← with a list of subcomputations represents a call to pbind. For the
purpose of sheet evaluation, we simply give pbind sequential semantics, i.e.,

pbind((ci)
n
i=1, f) = bind(c1, λv1. · · · bind(cn, λvn.f((vi)

n
i=1)) · · ·),

since this is the simplest way to get deterministic divergence derivations. Nevertheless,
we define JeKσ in terms of pbind to emphasize the logical structure of the computation.
The p and systemOrder functions used in the definition are described in Section 2.3.1.

The denotation rules for most language constructs should be unsurprising. Note
that up-navigation on an object reference raises an error if the target of the reference
no longer exists, even though the (former) ancestor can be computed syntactically
from the object reference. This is to prevent broken references from violating devel-
oper assumptions that if all objects in a column C with a given ancestor o have been
deleted (or formulas have been defined not to generate any), then up-navigation on
an object reference of type C cannot return o.

The definition of famcompM together with all its helper functions has two impor-
tant properties:

• All sets that arise in the definition are finite, so systemOrder is applied only
2Since the definition of an instance requires that M contain key families for the state columns, in

principle we could also consult M directly for these key families. However, it’s probably simpler for
implementations not to maintain key families as part of a state instance and instead use compute
for all key families, as indicated in our definition of famcompM .

41

famcompM(〈C, d〉) =

return M.fc[〈C, d〉], C ∈ SC and 〈C, d〉 ∈M.F
err, C ∈ SC and 〈C, d〉 /∈M.F
compute(〈C, d〉), C ∈ KC ∪ CC

compute(〈C, d〉) =

do _← checkObj(d)

if C ∈ KC : return {k(d)}
else (C ∈ CC) :

do v ← JΦ[C]K{this 7→ d}

return

{
{(d, k) | k ∈ v}, C ∈ OCK

v, otherwise

checkObj(d) =

if d = r : return ()

else (d : C ∈ OC+) :
do S ← read(〈C, p(d)〉){

return (), d ∈ S
err, otherwise

}

Figure 3-4: “Glue” code for family evaluation that makes all of the case distinctions
external to formula evaluation.

JvKσ = return σ[v] if v is a variable

single(c) =

do S ← c{

return v, S = {v}
err, otherwise

Je.idKσ =

do v ← JeKσ

let (vi)
n
i=1 = systemOrder(v)

(Si)
n
i=1 ← (navigate(vi, id))ni=1

return
⋃n

i=1 Si

navigate(o, id) =

{

do _← checkObj(o)

return ancestor(o, C)

}
, if o : D, lu(D, id) = {〈C, ↑〉}

read(〈C, o〉), if o : D, lu(D, id) = {〈C, ↓〉}

ancestor(o, C) =

{
o, o : C

ancestor(p(o), C), otherwise

Figure 3-5: Monadic denotational semantics for formulas, part 1.

42

J{ e1, . . .,en}Kσ =

{
do (Si)

n
i=1 ← (JeiKσ)ni=1

return
⋃n

i=1 Si

}

Je1 = e2Kσ =

{
do (v1, v2)← (Je1Kσ, Je2Kσ)

return (v1 = v2)

}

Je1 in e2Kσ =

{
do (v1, v2)← (Je1Kσ, Je2Kσ)

return (v1 ⊆ v2)

}

Je1 + e2Kσ =

do (S1, S2)← (Je1Kσ, Je2Kσ)

(x, y)← (single(return S1), single(return S2))

return {x+ y}

J{x:e|c}Kσ =

do S ← JeKσ

let (vi)
n
i=1 = systemOrder(S)

(bi)
n
i=1 ← (single(JcK(σ{x 7→ vi})))ni=1

return {vi | 1 ≤ i ≤ n, bi = true}

Jcount(e)Kσ =

{
do S ← JeKσ

return |S|

}

Jsum[x:e](a)Kσ =

do S ← JeKσ

let (vi)
n
i=1 = systemOrder(S)

(ui)
n
i=1 ← (single(JaK(σ{x 7→ vi})))ni=1

return
∑n

i=1 ui

Jif(e1, e2, e3)Kσ =

do b← single(Je1Kσ){

Je2Kσ, b = true
Je3Kσ, b = false

JlKσ = return {l} if l is a primitive literal

J$Kσ = return {r}

Figure 3-6: Monadic denotational semantics for formulas, part 2.

43

to finite sets and pbind only to finite sequences, as required. This is easiest
to see by applying a “type checking” point of view to the definition, assuming
that read(〈C, d〉) has type FiniteSet(type[C])sheet. Families in M are finite by the
definition of an instance, and no construct in the formula language can generate
an infinite set from finite sets.

• famcompM(〈C, d〉), like any computation in Tsheet defined by well-founded (or
as a special case, structural) recursion, must terminate after a finite number of
local reads.

Having completed the definition of family evaluation, we can now describe the
result of evaluating the entire sheet:

Definition 9. The computed instance of M , denoted M̂ , consists of the families and
values given by family convergence derivations of the form M ` 〈C, d〉 ⇓ v. (By
Proposition 1, the value of a given family is unique. It is straightforward to show
based on the definition of famcompM that M̂ is a valid instance, using Proposition 2
below for the finiteness.)

All readers of the data model, including the spreadsheet UI and web application
views, use the computed instance. Families 〈C, d〉 such that d ∈ M̂.objs but 〈C, d〉 /∈
M̂.F are those that failed to evaluate. The spreadsheet UI marks them specially,
but it’s unclear what is the best thing to do in general when a web application view
includes such a family.

We decline to expose any information about the cause of an error in divergence
judgments: our intent is that implementations have a debugger that shows the full
execution trace represented by the derivation, and our implementation does. In gen-
eral, developers may need the full execution trace to identify where behavior began
to differ from their expectations. Implementations may choose to show additional in-
formation about errors up front as a convenience, including information that crosses
family boundaries, e.g., “cyclic dependency between families 〈C1, d1〉 and 〈C2, d2〉”.
We do not model this in the semantics, especially because cross-family information
would complicate the statement of Proposition 3, but we point out that such error
reporting inherits the determinism of the underlying derivations.

Determinism of errors may appear to be a minor point, given that one hopes
that errors rarely occur. Its practical significance (in conjunction with the soundness
of dependency tracking) is that if the developer makes a change to the sheet while
debugging an error in a family 〈C, d〉 and the execution trace of 〈C, d〉 changes,
the developer can be sure that their change actually affected 〈C, d〉 according to
the semantics and did not merely trigger a different nondeterministic choice in the
implementation.

3.3.5 The Evaluation Algorithm and Computability

The archetypal algorithm to evaluate a sheet, shown in Fig. 3-7, is essentially a
constructive analogue of Proposition 1. It assumes a fixed state instance M and

44

populates a cache H that maps family identifiers to convergence or divergence deriva-
tions. The evaluateFamily function can be called to evaluate individual families on
demand as they are viewed in the spreadsheet UI or a web application view. If
desired, the evaluateAll function of Fig. 3-8 can be used to force evaluation of the
entire sheet. To detect dependency cycles, the algorithm maintains an explicit stack
S of the calls to evaluateFamily, which is empty between top-level calls. Each en-
try on S is a pair of a family identifier 〈C, d〉 and a multi-step derivation of the
form M ` famcompM(〈C, d〉) →∗ bindRead(〈C ′, d′〉, f), where 〈C ′, d′〉 is the target
of the next call to evaluateFamily. We use the names of the derivation rules from
Section 3.3.3 throughout as constructors that take derivations of the hypotheses and
return a derivation of the conclusion.

The algorithm is written to generate derivations to make its correctness clear, but
it should be clear that we can erase the derivations and keep only the outcome of
each family and the results will still be correct. The spreadsheet debugger can always
regenerate the local part of the derivation of a given family on demand using the
cached outcomes.

The algorithm detects dependency cycles, but it fails to terminate if called on a
family with an infinite, acyclic forward chain of dependencies. We envision that a
product-quality implementation would evaluate the sheet in the background, allowing
the developer to continue working and canceling the evaluation if the state instance
changes, or would give up at an implementation-defined limit, possibly giving the
developer the option to continue further.

Nontermination cannot actually happen in the data model as currently defined
because evaluated sheets are finite:

Proposition 2. There are finitely many objects d that exist (in the sense that
checkObj(d) succeeds).

Proof. It suffices to show this property for objects in each column C. The proof is
by induction on the depth of C in the column tree. An object d exists according to
checkObj if it is the root or the family 〈C, p(d)〉 converges and it is a member of that
family. Recall that the content of a family is always a finite set.

If C ∈ SC, then the claim follows immediately from the finiteness ofM . Otherwise,
by the inductive hypothesis, p[C] contains finitely many objects, and the convergent
families of these objects in column C together contain finitely many objects.

Corollary 1. During a top-level call to evaluateAll (Fig. 3-8) or to evaluateFamily
on an arbitrary family identifier, evaluateFamily is called on finitely many different
families.

Proof. evaluateSubtree only calls evaluateFamily directly on families of existing ob-
jects, and the only objects that are available for formulas to attempt to read their
families are existing objects and the targets of broken references already stored in
the state instance. By Proposition 2, there are finitely many families of existing
objects. Since state instances are finite, there are finitely many broken references,
and attempting to follow one of them can at most cause checkObj to recurse through

45

H ← {}; S ← []

function evaluateFamily(〈C, d〉)
if H[〈C, d〉] = null then
H[〈C, d〉]← evaluateFamilyImpl(〈C, d〉)

end if
return H[〈C, d〉]

end function

evaluateFamilyImpl← evaluateFamilyFull // Hook for the incremental algorithm

function evaluateFamilyFull(〈C, d〉)
c← famcompM(〈C, d〉)
L← []
loop

if c is of the form return v then
return Family(Return(Multistep(L)))

else if c = err then
return FamilyDiv(Err(Multistep(L)))

else // c is of the form bindRead(〈C ′, d′〉, f)
H ′ ← readFamily(〈C, d〉,Multistep(L), 〈C ′, d′〉)
if H ′ diverges then

return FamilyDiv(ReadDiv(Multistep(L), H ′))
end if
// Otherwise conclusion of H ′ is of the form M ` 〈C ′, d′〉 ⇓ v′
c← f(v′)
L.append(Read(H ′))

end if
end loop

end function

function readFamily(〈C, d〉, T, 〈C ′, d′〉)
S.push(〈C, d〉, T)
if 〈C ′, d′〉 is on S then

(〈Ci, di〉, Ti)ni=1 ← stack entries starting from 〈C1, d1〉 = 〈C ′, d′〉 to the top
H ′ ← cyclic derivation H1 defined by

Hi = FamilyDiv(ReadDiv(Ti, H(i+1) mod n)) for i = 1, . . . , n
else

H ′ ← evaluateFamily(〈C ′, d′〉)
end if
S.pop()
return H ′

end function

Figure 3-7: The full evaluation algorithm.

46

function evaluateSubtree(d)
C ← type of d
for each child column C ′ of C do

H ← evaluateFamily(〈C ′, d〉)
if conclusion of H is of the form M ` 〈C ′, d〉 ⇓ v then

for d′ ∈ v do
evaluateSubtree(d′)

end for
end if

end for
end function

function evaluateAll
evaluateSubtree(r)

end function

Figure 3-8: Code to force evaluation of the entire sheet.

finitely many nonexistent ancestors. Similarly, if evaluateFamily is called on an arbi-
trary family identifier 〈C, d〉, then either d exists or checkObj recurses through finitely
many nonexistent ancestors.

In fact, it can be shown that the functions currently computable using Object
Spreadsheets are precisely the primitive recursive functions, if an argument n is given
in the form of the set {0, . . . , n − 1}. We could add a built-in function to generate
such sets, but it has not been a priority. Instead, we are considering adding a fea-
ture to the system that would enable general recursion, namely, the ability for any
formula to construct “virtual” objects with arbitrary values for their state fields and
then read their computed fields. Virtual objects would be analogous to the nested
sheets that represent user-defined functions in Forms/3 [11] and the spreadsheet ex-
tension of Peyton Jones et al. [34]. In the remainder of the discussion, we imagine
such an extension has been made, so the definition of an instance no longer requires
finiteness (though in a real implementation, state instances would have to be finite)
and Proposition 2 no longer holds. Then, a simple example of nontermination would
occur with a virtual object type that represents a user-defined function definition
f(x) =̂ f(x+ 1).

3.3.6 Dependency Tracking and Incremental Reevaluation

We have said nothing yet about the fact that the outcome (return value or divergence)
of a family is determined by the outcomes of its dependencies. This locality property of
spreadsheet-like systems is valuable for developer understanding and program analysis
and makes it sound for implementations to reevaluate the sheet incrementally after
the values of some state families are changed. First we formalize the property.

47

Proposition 3. Let M0 and M be state instances for the same schema and program.
Suppose C /∈ SC and H0 is a derivation of M0 ` 〈C, d〉 o, where o is an outcome of the
form ⇓ v or ⇑. Let (〈Ci, di〉)ni=1 be the dependency list of H0 (Definition 8), and let
oi be the outcome of 〈Ci, di〉 in M0. Then a derivation H with respect to M with the
same local part as H0 (except for the replacement of M0 with M) can be constructed
from derivations of M ` 〈Ci, di〉 oi for i = 1, . . . , n.

If o = ⇑, then this construction is coinductive and guarded , meaning that the
assumed subderivations are used only unmodified in the resulting derivation under at
least one new step. The significance of this stipulation is that it is safe to apply the
proposition circularly to all of the ReadDiv derivations in a dependency cycle for M0

to yield an identical cycle for M , provided that all dependencies not part of the cycle
have the same outcomes with respect to both state instances.

Proof. Since C /∈ SC, we have famcompM0
(〈C, d〉) = compute(〈C, d〉), which does not

depend on M0. Thus, replacing M0 with M in the local part of H0 and incorporating
the derivations of M ` 〈Ci, di〉 oi gives a valid derivation H for M .

We can write a naive “incremental” algorithm that uses Proposition 3 directly
and rescans the whole sheet but avoids the actual reevaluation of families whose
dependencies did not change. The code is in Fig. 3-9 as a delta with respect to
Fig. 3-7. Here H0 may be the cache generated by either the incremental algorithm
or the full algorithm on a previous state instance. Both algorithms maintain the
invariant that if H contains a derivation of family convergence or divergence, it also
contains derivations for the dependencies, except while a dependency cycle is being
unwound. The incremental algorithm assumes that H0 has the same property.

Note that by the time evaluateFamilyIncremental(〈C, d〉) calls readFamily on a fam-
ily 〈C ′, d′〉, it is known that all previous dependencies have the same outcomes as
in H0, and therefore if we were to reexecute famcompM(〈C, d〉), it would still read
〈C ′, d′〉. (This idea is made precise in the construction of L.) This means that the
incremental algorithm only evaluates families that the full algorithm would also eval-
uate, and in particular, it must terminate if the full algorithm does.

The incremental algorithm still works if we erase the derivations and store only
the outcome and dependency list of each family. As the next step toward a realistic
implementation, we can maintain a persistent cache H̄ with reverse dependency lists.
When state families are changed, we mark their transitive dependents as “dirty” and
add any of these dependents that are currently being viewed to a work list. At this
point, the whole of H̄ representsH0 in the naive incremental algorithm, while the sub-
set of clean entries (whose full derivations are still valid) represents H. Accordingly,
evaluateFamily should call evaluateFamilyImpl if and only if the family does not have
a clean entry. Because we are not keeping the old data for families that have already
been reevaluated, the read of the old outcome of 〈C ′, d′〉 from H0 must be replaced
by a test of a flag on the entry for 〈C ′, d′〉 indicating whether its outcome changed in
the current pass. To complete the reevaluation, we just call evaluateFamily on each
family on the work list and purge any remaining dirty entries, because the single-pass
change flags are insufficient for future passes to know whether the outcomes of the
dependencies of such entries have changed since the entries were originally generated.

48

evaluateFamilyImpl← evaluateFamilyIncremental

function evaluateFamilyIncremental(〈C, d〉)
if C ∈ SC or H0[〈C, d〉] = null then

return evaluateFamilyFull(〈C, d〉)
end if
H0 ← H0[〈C, d〉]
newDeps← []
for 〈C ′, d′〉 in D(H0) do

// H ′0 must exist and match the subderivation of H0.
H ′0 ← H0[〈C ′, d′〉]
L← Read steps of H0 up to the first read of 〈C ′, d′〉,

with dependency derivations replaced with newDeps
H ′ ← readFamily(〈C, d〉,Multistep(L), 〈C ′, d′〉)
if H ′ diverges then

return FamilyDiv(ReadDiv(Multistep(L), H ′))
else if conclusion of H ′ 6= conclusion of H ′0 then

return evaluateFamilyFull(〈C, d〉)
end if
newDeps.append(H ′)

end for
return H0 with dependency derivations replaced with newDeps

end function

Figure 3-9: The naive incremental evaluation algorithm.

49

Alternatively, if each entry includes the outcomes of its dependencies from which
it was generated, then the change flags are not necessary, and it becomes safe to keep
dirty entries in the cache for families that are no longer needed by the current view,
in case the families become needed again in the future and the entries are found to
be valid again at that time. This is the approach commonly used by build tools such
as Pluto [22].3

Note that a dirty entry for a family 〈C, d〉 may be marked clean again without
reexecuting famcompM(〈C, d〉) if none of the dependencies ultimately changed. In
the worst case, after a change to a single state family, the system might spend time
traversing many families to mark them dirty and clean again without their outcomes
changing. In a few hours, we were unable to find any promising general approach to
mitigate this problem without giving up the property of only evaluating families that
the full algorithm would. Of course, one trick that may reduce the traversal overhead
without giving up termination guarantees is to speculatively start evaluating the
immediate dependents of the changed state family to see if they are unchanged, and
after a timeout, mark them dirty and proceed with the traversal.

3.3.7 Determinism and Catching of Cyclic Dependency Errors

By Proposition 1, the derivation (or outcome if we erase the derivation) returned by
evaluateFamily for a given family 〈C, d〉 is the same no matter what sequence of calls
is made to evaluateFamily. This is not true of some previous systems that appear
to be based on a cycle-detecting evaluation algorithm like evaluateFamily but allow
formulas to catch cyclic dependency errors. For example, we observed the following
phenomenon in LibreOffice Calc version 5.0.6.1:

1. Define:

A1 = "X" & IFERROR(B1, "_"), B1 = "Y" & IFERROR(A1, "_")

The formulas evaluate to "XY_" and "Y_", respectively.

2. Cut and paste A1 to A2. The formulas still evaluate to "XY_" and "Y_".

3. Undo twice and then redo twice. This should leave the sheet in the same state,
but now A2 reads "X_" and B1 reads "YX_".

One could at least guarantee determinism by fixing the order in which cells are eval-
uated, but the property no longer holds that the outcome of a computed cell is the
result of its formula on the outcomes of its dependencies. It’s not obvious how to write
a semantics that is easy to reason about in this (hopefully rare) case. Until then, for
some applications, nondeterminism or violations of the locality property might be
considered a lesser evil than unconditional application failure. At least there is no

3Yet another option is to keep the entire local part of the derivation for each family. This makes
it possible to pick up execution of famcompM (〈C, d〉) from the first dependency that changed, saving
any work before that point, but this may not be a useful point in the design space compared to
deeper analysis of subformula dependencies.

50

ParentView Child Meeting
parent student enrollment teacher sel. slot avail. slots
Person Person Enrollment Person Slot Slot

• Molly • Fred • Fred @ Potions Snape Snape @ 1pm
• Fred @ Divination Trelawney Trelawney @ 4pm

Trelawney @ 5pm
Trelawney @ 6pm

• George • George @ Charms Flitwick Flitwick @ 10am
Flitwick @ 11am

Hello, Molly.
Meetings for Fred selected pick one:

Snape @ 1pm ◦ Trelawney @ 4pm
× ◦ Trelawney @ 5pm

◦ Trelawney @ 6pm
Meetings for George pick one:

◦ Flitwick @ 10am
◦ Flitwick @ 11am

Figure 3-10: A view model and one instance for scheduling parent-teacher meetings,
with an example rendering.

problem in allowing errors unrelated to cyclic dependencies to be caught: they can
be viewed as a new kind of convergent value for a cell.

3.4 Application Views

Application views follow MVC guidelines. The design of HTML views is hierarchical
by nature, so it seems desirable to have a hierarchical model backing it. We define
a view model to be a designated sub-tree of the data model, by picking an object
column C ∈ OC and including all its descendant columns and all the cells in these
columns. The view model is crafted through formulas to contain exactly those data
items that are to be displayed. If a view needs some parameters, such as the currently
logged-in user, selected class, etc., then these parameters are placed in state fields of
a common view instance object v : C. This allows several instances of the same view
to exist simultaneously.

The view instance is then mapped onto an HTML template using standard tem-
plating techniques. Notice that at this point the template does not have to contain
any logic such as conditional statements; such logic can be pushed to the formulas
populating the view. This makes the binding straightforward, following the nested
structure of the view model.

An example from the parent-teacher conference application described in Sec-
tion 5.2 is shown in Fig. 3-10. Under the object column “ParentView”, “parent”
is a state value column that is filled with a reference to the user requesting the view.

51

Formulas then pull out the relevant data from the other columns in the data model.
Notice that “ParentView”;“Child” and “Child”;“Meeting”, matching the contain-
ment structure of the rendered HTML.

To understand how the control aspect works, notice the buttons × and ◦ in
the figure; clicking a button fires a transaction that mutates the data in order to
schedule or cancel a meeting. Transactions are explained in the next chapter; the
important thing to notice is that the button is contained in a UI element, which is in
turn associated with a cell in the spreadsheet, simplifying the task of associating the
click with the relevant data item(s) that need to be updated.

52

Chapter 4

Transactions

An object spreadsheet can contain transaction procedures , which are stored proce-
dures that can be called by unprivileged users to mutate the spreadsheet state, similar
to events in Sunny [30]. Each execution of such a procedure is a transaction. Transac-
tions are atomic with respect to readers and other transactions and are automatically
rolled back if they fail.

Transaction procedures are written in a simple procedural language that currently
does not include all the abstraction capabilities of general-purpose programming lan-
guages; we may consider offering greater abstraction to advanced developers in the
future. Like the language of DAPLEX [36], our language requires separate state-
ments to create an object and initialize each of its fields, and it offers statements
to update sets incrementally by additions and removals. The grammar is shown in
Fig. 4-1. Each procedure has a signature defined by a type assignment Γ to named
parameters. The body of the procedure is a sequence of statements.

Much of the semantics is self-explanatory. For all of the mutation statements, if
the first expression returns multiple objects, each is mutated in the manner described.
Families of (value) cells are manipulated as sets of values, via :=, add, and remove.
State objects are created with the new statement, which returns a new object each
time it executes; delete deletes all objects returned by the expression, including all
data they own.

The check statement fails the transaction if the condition is false. An idiom
is to define a cell whose formula is the conjunction of all application-specific data
validity conditions and check it at the end of each transaction. A transaction also
fails if any formula in a statement fails to evaluate. We leave to future work the issue
of giving unprivileged users as much information about errors as possible without
leaking confidential data.

Like formulas, procedures are type-checked when they are first defined (in order to
resolve column references) and again after each change to the schema; a procedure that
is ill-typed with respect to the current schema cannot be executed. The let statement
sets a local variable and adds an entry to the type environment Γ for subsequent
statements according to the type of the expression assigned, as determined by the rules
of Fig. 3-2. The type of new e is the same as that of the corresponding sub-expression
e. Since conditional assignment to a local variable is a common programming idiom,

53

procedure ::= (Γ) → block
block ::= statement∗
statement ::= let var-name = expr // set local variable

| expr.column-name := expr // replace content of value family
| to set expr.column-name add expr // add element(s) to value family
| from set expr.column-name remove expr // remove element(s) from value family
| (let var-name =)? new expr.column-name // create object
| delete expr // delete object
| if expr { block } (else { block })?
| foreach (var-name : expr) { block }
| check expr // validation/assertion

Figure 4-1: Procedural language syntax.
we make local variable assignments inside an if statement visible after the statement,
provided that the variable has the same type at the end of both branches; if the types
differ, the variable cannot be read after the if statement. Assignments inside a
foreach loop are not visible outside the loop.

Several example transaction procedures are included in the description of the
Hack-q application in Section 5.3. Clearly, writing a transaction procedure presents
a greater challenge to an end-user developer than writing formulas. For creation, up-
date, and deletion transactions on a single object type, the tool could offer a command
to generate a procedure, which the developer could then customize. We envision let-
ting the developer set up one or more example calls with particular arguments and
optionally a hard-coded starting state (if the production state changes too rapidly to
make a stable example case), and then showing the mutations that would be made
and local variables that would be bound by each statement as it is written, an ap-
proach known as example-centric programming [20]. To diagnose problems with past
transactions, the system could store their execution traces and allow the developer
to browse and search these traces as well.

54

Chapter 5

Experiments and Evaluation

5.1 Prototype Implementation

We have built a prototype of the Object Spreadsheets execution engine and developer
interface on top of the Meteor web framework [29]; all our applications thus inherit
the reactivity of Meteor. The developer UI is rendered via a Handsontable [24] widget
with cell merging managed by our code, and supports editing the schema (that is, the
overall structure) and its contents. Formulas and values are type-checked to ensure
conformance to the schema. Transaction procedures are executed by the engine, but
they cannot yet be edited in the developer interface (so they must be provided in a
file).

5.2 Overview of Example Applications

To assess the applicability of our model, we collected scenarios in which our colleagues
faced a need for a collaborative data-driven web application for a specific task. We
noted a few of the most interesting features of each application and considered how
best to implement them in an object spreadsheet. We then built the essential parts
of these applications, and hand-coded UIs for them with basic client-side Meteor
templates (eventually, UI building will be integrated in the developer interface).

The applications are:

• PTC—the parent-teacher conference application mentioned in the the introduc-
tion. Teachers, students, and parents are stored as Person objects. A reference
field links students to their parents. Teachers own Slot objects that represent
potential meeting times. Classes are stored using another top-level object col-
umn, and each class owns Section objects, which in turn have references to
teachers teaching those sections, as well as own Enrollment objects that link
to enrolled students. Parents can only schedule one meeting per Enrollment of
each of their children, in a slot of the correct teacher (i.e., the teacher of the
section in which the student is enrolled); and slots cannot be double booked.

55

• Dear Beta, a site for students working on a system architecture assignment to
share advice on correcting particular test failure modes. Students can vote on
questions and answers as on Stack Overflow. The questions are organized in a
tree structure matching the structure of the exercises given in class.

• Hack-q, a system for participants in a hackathon to request help from mentors
in particular areas of expertise. This case study is discussed in more detail
below.

• Got Milk, a management application for a group of people who share a pool of
fresh milk for coffee. Teams of two members take turns buying the milk for the
entire group. The application sends e-mail notifications for members when it is
their turn to buy the milk, and alerts when milk supply is low.

To give an idea of the size of the applications, Table 5.1 shows the sizes of the
Object Spreadsheets that were used to back them. The numbers under “Data” and
“Formulas” indicate the number of columns of respective kind. The numbers under
“Procedures” indicate the number of lines of procedure code that were written for
mutations.

5.3 Example Application: Hack-q
We present the data model, formulas, and transactions constructed for the “Hack-q”
example and explain their function in finer detail. In this application, participants of
an organized hackathon access a web form where they fill in their name, the program-
ming area in which they require assistance, and their current location. Meanwhile,
designated mentors have been classified according to their area of expertise—each
mentor has been assigned one or more “skills”. The submitted request then shows
up in the relevant mentors’ queues as a “call”. A mentor can then “pick” the call,
in which case it disappears from the queues of other mentors. After talking to the
participant, the mentor may close the call (discarding it from the queue), or forfeit
the call, putting it back so that it reappears in all other queues and can subsequently
be picked up again by another mentor.

Fig. 5-1 shows a sample sheet containing some concrete data. Column names,
their types, and their hierarchy are shown by the header of the spreadsheet. The

Data Formulas Procedures
total # # object # computed
columns columns columns LOC

PTC 40 12 9 17
Dear Beta 13 7 1 7
Hack-q 13 3 1 9
Got Milk 16 5 1 16

Table 5.1: Sizes of sample applications.

56

formula for the column “inbox” (under “Staff”) computes a mentor’s incoming queue.
Every mentor is assigned a set of “Call” objects on subjects relevant to the mentor’s
skills as listed in the “expertise” column. The calls are sorted according to the “time”
column. Calls assigned to other mentors, and calls that have been forfeited by that
mentor, are subtracted from their queue. The transactions are used to insert and
remove elements from the queue, and are quite straightforward.

For comparison, we built as much of Hack-q in QuickBase as we could. We
created Skills and Calls tables as in Fig. 5-1, but we stored the expertise information
in reverse by adding a QuickBase user-list field, “Experts”, to the Skills table to hold
the set of mentors with the skill. With this representation (which we found slightly
unnatural), we were able to define an Inbox report on the Calls table that tested
whether the current user was in the Experts list of the skill record associated with
each call. However, if we wanted to enhance the application so that a call could
require multiple skills, this would require only a small change in Object Spreadsheets
but we are not aware of a way to express such logic in QuickBase; this illustrates the
risk that developers take by investing in a tool with limited expressive power. Also,
QuickBase does not support application-specific mutation patterns (such as assigning
a call to the current user) in the core application builder; instead, the developer has to
write a formula to concatenate strings into a URL that will make the desired change
via the QuickBase API and then add a link to this URL to the page.

5.4 User Study

To begin to collect feedback about how a tool like ours would be received by the in-
tended end-user developers, we conducted a small user study, recruiting four individ-
uals with experience building data-driven applications from a local user group for one
of the existing application builders and from our department. We guided each partic-
ipant through the process of building a book marketplace application (very similar in
complexity to the parent-teacher conference application) using Object Spreadsheets.
With three of the participants, we went through the same process in QuickBase. We
wanted to know the strengths and weaknesses the participants experienced in each
tool once they understood the basics; we did not believe a learnability test with no
guidance would be realistic or appropriate at this stage.

The major lessons we learned:

• One participant said editing the entire schema and data set on one screen was
much better than going back and forth between schema and data pages for each
table in QuickBase.

• Two of the participants liked the ability to nest objects and said they would
use it. One of them has built several applications backed by a data warehouse
and expressed frustration with the number of different database views that had
to be joined explicitly, and observed that appropriate use of nesting in the
original views would reduce this burden. This remark was made in the context

57

Skill Staff Call
name name expertise inbox time name location issue assign forfeit
text text Skill Call date text text Skill Staff Staff

• Python • Remus Firefox Myrtle • 9:53 Angelina Forbidden Linux
• Android Python Forest
• Firefox • Severus Linux Angelina • 10:18 Myrtle Chamber Firefox
• Linux Python Neville of Secrets

• Dolores Android Angelina • 11:31 Neville Hall of Python Severus
Linux Myrtle Hexes
Firefox

Formulas inbox

{c : $.Call |
c.issue in expertise
&& (c.assign = {} || c.assign = {Staff})
&& !(Staff in c.forfeit)}

Procedures enqueue (name : text, issue : text, location : text)

let q = new $.Call
q.time := now
q.name := name
q.location := location
q.issue := {s : $.Skill | s.name = issue}
check q.issue != {}

pick (call : Call, user : Staff)

call.assign := user
forfeit (call : Call)

to set call.forfeit add call.assign
call.assign := {}

done (call : Call)

delete call

Hello! I am name and I need help with issue .
I am in location .

−→ enqueue

[
name
issue
location

]

Severus, your calls are
Angelina (Linux) Pick
»Neville (Python)« Forfeit Done

pick
[
call
user

]
forfeit [call]
done [call]

Figure 5-1: Data model, formulas, transaction procedure code, and HTML forms
associated with the simple queuing example “Hack-q” in the case study.

58

of querying an existing database, but one would imagine the same principle
would apply to designing an application from scratch.

• All participants struggled to write formulas, especially set comprehensions. The
ability of end-user developers to construct formulas is critical for the success of
our system, and we believe the situation will improve with the implementation
of the formula builder.

In addition, participants pointed out a number of specific UI elements that were
confusing or error-prone and made suggestions for improvement, which we are in the
process of reviewing.

59

60

Chapter 6

Related Work

Spreadsheet-backed application builders. The only spreadsheet-backed ap-
plication builder designed to allow persistent state in the spreadsheet to be mutated
via the application UI is Quilt [10]. It uses an unmodified Google Spreadsheet and
does not attempt to overcome the limitations of the traditional spreadsheet model,
so at most it supports a single table containing one record per row. The developer
creates an HTML page and specifies an element to be repeated to display each record,
subelements of which may be bound to fields of the record using column names or
may be hidden conditionally based on fields. In addition, controls can be designated
to add and delete records.

Spreadsheet design features have been pursued more extensively for development
of “mashup” applications that combine, transform, and query data from multiple
sources but do not maintain their own persistent state. Gneiss [13, 14] and Spread-
Mash [26] both retain the two-dimensional grid but allow cells to contain nested
data structures retrieved from external sources. They can extract and filter items
from these structures, and SpreadMash can even define computed fields on them, but
neither tool can generate or mutate such structures on its own.

Other data-driven application builders. Subtext with Two-Way Dataflow
[19] is analogous to our work in offering a continuously visible rich data model with
computed data and application UI binding support, and it has an intriguing design for
batching view updates using a total order on the data model. However, its developer
UI is less familiar than a spreadsheet, and it’s unclear to us how the UI will scale to
development of our target applications.

App2You [27] and AppForge [39] both let the developer build hierarchical forms,
constructing the schema automatically, and offer a menu of access control policies.
However, neither has demonstrated how end-user developers would build arbitrary
logic. AppForge supports only filters of the form “field operator constant”, and [27]
does not state the form of filters supported by App2You, though it mentions a formula
language as a future extension.

Finally, the mainstream application builders QuickBase [1], FileMaker [2], and
Knack [4] all support computed fields that are a function of fields of the same object
or aggregations of related objects, but none has the ability to repeat a computation

61

on each related object, as Object Spreadsheets can by introducing a computed object
column.

Naked Objects. Our work may recall the Naked Objects approach to appli-
cation design [33]. The essential principles of this approach are (1) a commitment
to encapsulating all logic in the objects it affects and (2) automatic generation of
the application UI from the schema and programmatic interfaces. The use of Object
Spreadsheets as a data model and development tool for the application logic appears
to be orthogonal to both of these principles. (Object Spreadsheets currently does
not provide any features to enforce encapsulation, but a developer can still choose to
respect it.) Furthermore, the spreadsheet UI on the application state could play the
role of the automatically generated application UI, except for the need for read access
control. It does not yet provide a way to invoke procedures, but this is planned.

Nested table interfaces to relational data. Related Worksheets [8] is a
spreadsheet-like tool that lets a developer construct a schema for a set of related
tables and join them into editable nested-table views. The original vision was to
provide most of the features of spreadsheets, but formula support was never added.
Instead, the authors went on to develop SIEUFERD [7], a tool for exploring existing
relational databases. SIEUFERD lets a developer construct nested-table views using
menu commands for joins, filtering, and sorting, but does not support modifying the
data or the schema. SIEUFERD also supports computed fields, with a formula lan-
guage that supports navigations both up and down the hierarchy, though many data
transformations are only achievable via the menu commands. SIEUFERD assembles
its views by generating a set of SQL queries and does not have a semantics at the
cell level, and indeed, some changes to the view definition have non-local effects that
surprised us. We believe there is a subset of SIEUFERD’s functionality that (with
the use of some boilerplate) is equivalent to the computational capabilities of Object
Spreadsheets, though we have not verified this. Object Spreadsheets differs in its sup-
port for schema and data editing, stored procedures, and abstract object references
and its demonstration as a backend for web applications.

SheetMusiq [28] is similar in computational capabilities to SIEUFERD, but its UI
differs superficially from a nested table layout: it repeats the values in columns at
outer levels of the nesting.

Mashroom [23] uses a typed, nested data model and a nested table layout like
ours and has a formula language similar in spirit to ours with support for hierarchical
navigation (Mashroom does not have object references). However, its computational
model is based on a script of transformations starting from the source data, such as
“insert a column containing a snapshot of the result of this formula”, which can then
be replayed on new source data. One could achieve a development cycle similar to
ours by modifying formulas in the script and replaying it, with the limitation that
dependencies must be acyclic at the column level rather than the family level. Also,
Mashroom does not consider mutations to a permanent state, as contrasted with edits
recorded in the script.

62

Structured spreadsheets. Several existing spreadsheet tools are able to main-
tain varying degrees of structure within a two-dimensional grid. In Microsoft Excel,
if a formula is entered in a cell in a range designated as a “table”, then the column
of the range becomes “calculated” and is automatically filled with the same formula
(including rows added to the table later) and Excel warns if the formula is overridden
in individual cells.

MDSheet [17] is somewhat more general. It lets the developer define the structure
and formulas of a spreadsheet using the ClassSheets [21] modeling format, which
supports repeating row and column groups and a dot notation for navigation, and it
maintains the structure and formulas as the developer adds and removes instances
of the repeating groups. There appears to be no obstacle in principle to supporting
programmatic addition and removal of such instances. However, MDSheet supports
only one level of repetition along each axis of the grid, which limits its expressive
power compared to Object Spreadsheets.

Sumwise [31, 32] lets the developer annotate rows and columns with arbitrary tags
(which could represent object types or fields) and then declaratively bind formulas
to all cells with certain tags. However, the available documentation is insufficient
for us to evaluate its expressive power compared to Object Spreadsheets, and it does
not make explicit the points at which the developer foresees addition or removal of
instances of repeating row or column groups.

Other spreadsheet extensions. We have reviewed several systems that extend
spreadsheets with new capabilities to see if they might be capable of handling nested
variable-size sets with per-item formulas definable in context, even if their original
motivation differed from ours. Mini-SP [40] meets this test, since it allows sheets to
be nested in cells and has a rich programming language that includes the ability to
instantiate a nested sheet for each cell in an input array, but the code required is more
complex than in Object Spreadsheets. Forms/3 [11] is capable of mapping auxiliary
sheets containing per-item formulas across a variable-size input array but does not
support nested data. The Analytic Spreadsheet Package [35] and the spreadsheet
of Clack and Braine [16] combine the two-dimensional grid with formulas in more
powerful programming languages that can manipulate nested data structures, so such
structures can be stored in a single cell, but items in these structures are not first-class
entities in the system as they are in Object Spreadsheets.

Other tools that bridge databases and spreadsheets. Senbazuru [15] au-
tomatically recognizes and extracts relational data from existing spreadsheets and
provides a UI for developers to perform certain types of queries, but it does not al-
low queries to be defined persistently, does not match the expressiveness of Object
Spreadsheets, and does not have an approach to handle programmatic mutations.

Sroka et al. [37] give a construction to store relational tables in a traditional spread-
sheet and execute SQL queries reactively by translating them to intricate spreadsheet
formulas. This may be a convenient environment to work with data, but it does not
improve upon SQL in terms of end-user development of queries.

63

64

Chapter 7

Conclusions and Future Work

Our work so far has demonstrated the basic idea of a spreadsheet with support for
structured data and shown how the logic of data-driven web applications can be ex-
pressed in such a spreadsheet. Our experience has been that the spreadsheets are
easy to understand and easy to change, making them suitable for rapid prototyping
without up-front design and for situations where the requirements tend to change fre-
quently. However, work remains to be done to support the complete web application
development process and make it as easy as possible for end-user developers. The
major areas of future work we envision are as follows. Of course, we plan to continue
seeking feedback from our target end-user developers and adjust plans accordingly.

Casual editing: Interaction techniques and editing operations to help devel-
opers work toward the appropriate schema for their data set one step at a time,
supporting the same casual work style as unstructured spreadsheets rather than plac-
ing a premium on thinking at a high level of abstraction in order to get the schema
right in advance. In one potential interaction technique, applied to the space alloca-
tion example of Section 1.4.1, the developer would initially lay out all the columns
without any nesting and enter one room with a single occupant. Then, they would go
to add a second occupant and realize that it should have its own cells in the “name”
and “role” columns but not in the other columns, so they would select the “name” and
“role” cells of the first occupant and invoke a command, “insert cells below”. The tool
would automatically group the “name” and “role” columns into a nested object type
and add a second nested object to the room, with the effect of inserting cells below
the originally selected ones.

Configurable axes: Support for laying out different fields and object types as
well as different objects of the same type along either axis of the sheet, rather than
always laying out fields and object types in columns and different objects of the same
type in rows. This would support basic use cases such as totals at the bottom of a
column and grids with one variable on each axis as well as more complex layouts with
arbitrary groups of cells that repeat along each axis, as in MDSheet [17].

65

Formula builder: An interactive formula builder analogous to that of a tradi-
tional spreadsheet tool (with integrated language documentation and subexpression
results) but addressing the issues unique to our data model. Such issues include (1)
visualizing all forms of navigation expressions the system may ultimately support and
constructing them by clicking; and (2) previewing the result of a subexpression for
each of several different values of the bound variables.

Procedure builder: A procedure builder analogous to the formula builder to
develop the procedures that implement web application mutations.

Model and language extensions: Enhancements to the data model and lan-
guage to make application logic easier to express. These could include additional
options for the content of a family (a single value, multiset, or ordered list rather
than a set); a “group by” operator; and “virtual” objects that are passed by value and
do not have their own permanent locations in the state (though copies of them can
be stored inside other objects). Any formula could construct a virtual object by spec-
ifying values for its “state” fields and then read its computed fields. Virtual objects
could be used to represent invocations of user-defined functions (as in Forms/3 [11]
and the spreadsheet extension of Peyton Jones et al. [34]) as well as application view
instances (Section 3.4), neither of which should have their own permanent existence
in the state.

Updatable views: Support for writing to a “view” consisting of computed data,
either directly via the spreadsheet or application UI or programmatically, to trigger
writes to underlying data. A write may be implemented by “running the formula in
reverse” when doing so has a clear meaning or via a custom procedure or some other
programming model. It may be difficult to implement the desired update behavior
when writes to a view arrive one field at a time, so we may need an abstraction to
batch writes before they are sent to the update procedure, or we may use a more
rigidly structured model like Subtext’s Two-Way Dataflow [19] if case studies suggest
it will work well.

UI builder: A builder for the application UI that includes all the features of
the spreadsheet interface, but applied to a WYSIWYG representation of the page
instead of the nested table layout. For example, to design a page in which the user
enters a query parameter in a field at the top and sees a list of matching objects in
a nested table, the developer would enter the query formula directly into the nested
table in the UI preview, clicking on the field to refer to the parameter value entered
by the user.

Programmatic interfaces to other services: Support for Object Spread-
sheets applications to interact with other services by publishing and consuming time-
varying data sets or by sending or receiving events or remote procedure calls. Some
care is needed to integrate such interactions tastefully into the programming model,

66

maintaining as much of its predictability as possible. Probably the most ubiquitous
example of an interaction is that applications need to send email. The interface to
send a message could consist of a procedure call or of insertion of a row into a spe-
cial table, but the latter design raises the questions of whether the table stores sent
messages indefinitely and what happens if one attempts to delete a row for a message
already sent.

67

68

Bibliography

[1] Business apps, online databases & custom software: Intuit QuickBase. http:
//quickbase.intuit.com/.

[2] Create custom solutions: FileMaker. http://www.filemaker.com/.

[3] Google Forms - create and analyze surveys, for free. http://www.google.
com/forms/about.

[4] Knack - easy online database and business apps. https://www.knackhq.
com/.

[5] LINQ (Language-Integrated Query). https://msdn.microsoft.com/
en-us/library/bb397926.aspx.

[6] Online form builder with cloud storage database: Wufoo. http://www.
wufoo.com/.

[7] Eirik Bakke and David R. Karger. Expressive query construction
through direct manipulation of nested relational results. In Proceed-
ings of the 2016 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’16, New York, NY, USA, 2016. ACM. To ap-
pear; preprint available at http://people.csail.mit.edu/ebakke/
research/sieuferd_sigmod2016.pdf.

[8] Eirik Bakke, David R. Karger, and Rob Miller. A spreadsheet-based user inter-
face for managing plural relationships in structured data. In Proceedings of the
International Conference on Human Factors in Computing Systems, CHI 2011,
Vancouver, BC, Canada, May 7-12, 2011, pages 2541–2550, 2011.

[9] Eirik Bakke, David R. Karger, and Robert C. Miller. Automatic layout of struc-
tured hierarchical reports. IEEE Trans. Vis. Comput. Graph., 19(12):2586–2595,
2013.

[10] Edward Benson, Amy X. Zhang, and David R. Karger. Spreadsheet driven
web applications. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, UIST ’14, pages 97–106, New York, NY,
USA, 2014. ACM.

69

http://quickbase.intuit.com/
http://quickbase.intuit.com/
http://www.filemaker.com/
http://www.google.com/forms/about
http://www.google.com/forms/about
https://www.knackhq.com/
https://www.knackhq.com/
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
http://www.wufoo.com/
http://www.wufoo.com/
http://people.csail.mit.edu/ebakke/research/sieuferd_sigmod2016.pdf
http://people.csail.mit.edu/ebakke/research/sieuferd_sigmod2016.pdf

[11] Margaret Burnett, John Atwood, Rebecca Walpole Djang, James Reichwein,
Herkimer Gottfried, and Sherry Yang. Forms/3: A first-order visual language
to explore the boundaries of the spreadsheet paradigm. J. Funct. Program.,
11(2):155–206, March 2001.

[12] Iliano Cervesato. The Deductive Spreadsheet. Springer Berlin Heidelberg, 2013.

[13] Kerry Shih-Ping Chang and Brad A. Myers. Creating interactive web data appli-
cations with spreadsheets. In Proceedings of the 27th Annual ACM Symposium
on User Interface Software and Technology, UIST ’14, pages 87–96, New York,
NY, USA, 2014. ACM.

[14] Kerry Shih-Ping Chang and Brad A. Myers. A spreadsheet model for using web
service data. In Visual Languages and Human-Centric Computing (VL/HCC),
2014 IEEE Symposium on, pages 169–176, July 2014.

[15] Zhe Chen, Michael Cafarella, Jun Chen, Daniel Prevo, and Junfeng Zhuang.
Senbazuru: A prototype spreadsheet database management system. Proc. VLDB
Endow., 6(12):1202–1205, August 2013.

[16] Chris Clack and Lee Braine. Object-oriented functional spreadsheets. In Proc.
10th Glasgow Workshop on Functional Programming, GlaFP ’97, 1997.

[17] Jácome Cunha, João Paulo Fernandes, Jorge Mendes, and João Saraiva. Md-
sheet: A framework for model-driven spreadsheet engineering. In Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12, pages
1395–1398, Piscataway, NJ, USA, 2012. IEEE Press.

[18] Nils Anders Danielsson. Operational semantics using the partiality monad. In
International Conference on Functional Programming 2012, ACM Press, pages
127–138, 2012.

[19] Jonathan Edwards. Two-way dataflow. In Future of Programming Workshop
2014. https://vimeo.com/106073134.

[20] Jonathan Edwards. Example centric programming. SIGPLAN Notices,
39(12):84–91, December 2004.

[21] Gregor Engels and Martin Erwig. ClassSheets: Automatic generation of spread-
sheet applications from object-oriented specifications. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering, ASE
’05, pages 124–133, New York, NY, USA, 2005. ACM.

[22] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound and optimal incre-
mental build system with dynamic dependencies. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 89–106, New York, NY,
USA, 2015. ACM.

70

https://vimeo.com/106073134

[23] Yanbo Han, Guiling Wang, Guang Ji, and Peng Zhang. Situational data in-
tegration with data services and nested table. Serv. Oriented Comput. Appl.,
7(2):129–150, June 2013.

[24] A minimalist Excel-like data grid editor for HTML & JavaScript. www.
handsontable.com.

[25] Daniel Jackson. Alloy: A new technology for software modelling. In Tools
and Algorithms for the Construction and Analysis of Systems, 8th International
Conference, TACAS 2002, Held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, page 20, 2002.

[26] Woralak Kongdenfha, Boualem Benatallah, Régis Saint-Paul, and Fabio Casati.
Spreadmash: A spreadsheet-based interactive browsing and analysis tool for data
services. In Proceedings of the 20th International Conference on Advanced In-
formation Systems Engineering, CAiSE ’08, pages 343–358, Berlin, Heidelberg,
2008. Springer-Verlag.

[27] Keith Kowalczykowski, Kian Win Ong, Kevin Keliang Zhao, Alin Deutsch, Yan-
nis Papakonstantinou, and Michalis Petropoulos. Do-it-yourself custom forms-
driven workflow applications. In CIDR 2009, Fourth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, 2009,
Online Proceedings, 2009.

[28] Bin Liu and H. V. Jagadish. A spreadsheet algebra for a direct data manipulation
query interface. In Proceedings of the 2009 IEEE International Conference on
Data Engineering, ICDE ’09, pages 417–428, Washington, DC, USA, 2009. IEEE
Computer Society.

[29] An open source platform for building web applications. www.meteor.com.

[30] Aleksandar Milicevic, Daniel Jackson, Milos Gligoric, and Darko Marinov.
Model-based, event-driven programming paradigm for interactive web applica-
tions. In ACM Symposium on New Ideas in Programming and Reflections on
Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October
26-31, 2013, pages 17–36, 2013.

[31] Darren Miller, Gary Miller, and Luis M. Parrondo. Sumwise: A smarter spread-
sheet. In EuSpRiG, 2010.

[32] Gary Miller. The spreadsheet paradigm: A basis for powerful and accessible pro-
gramming. In Companion Proceedings of the 2015 ACM SIGPLAN International
Conference on Systems, Programming, Languages and Applications: Software for
Humanity, SPLASH Companion 2015, pages 33–35, New York, NY, USA, 2015.
ACM.

[33] Richard Pawson. Naked objects. PhD thesis, Trinity College, 6 2004.

71

www.handsontable.com
www.handsontable.com
www.meteor.com

[34] Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A user-centred
approach to functions in Excel. In Proceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’03, pages 165–176,
New York, NY, USA, 2003. ACM.

[35] Kurt W. Piersol. Object-oriented spreadsheets: The analytic spreadsheet pack-
age. In Conference Proceedings on Object-oriented Programming Systems, Lan-
guages and Applications, OOPSLA ’86, pages 385–390, New York, NY, USA,
1986. ACM.

[36] David W. Shipman. The functional data model and the data language DAPLEX.
ACM Trans. Database Syst., 6(1):140–173, March 1981.

[37] Jacek Sroka, Adrian Panasiuk, Krzysztof Stencel, and Jerzy Tyszkiewicz. Trans-
lating relational queries into spreadsheets. IEEE Transactions on Knowledge and
Data Engineering, 27(8):2291–2303, August 2015.

[38] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin
Hirzel. Stream processing with a spreadsheet. In ECOOP 2014 - Object-Oriented
Programming - 28th European Conference, Uppsala, Sweden, July 28 - August
1, 2014. Proceedings, pages 360–384, 2014.

[39] Fan Yang, Nitin Gupta, Chavdar Botev, Elizabeth F Churchill, George
Levchenko, and Jayavel Shanmugasundaram. Wysiwyg development of data
driven web applications. Proc. VLDB Endow., 1(1):163–175, August 2008.

[40] A.G. Yoder and D.L. Cohn. Real spreadsheets for real programmers. In Computer
Languages, 1994., Proceedings of the 1994 International Conference on, pages
20–30, May 1994.

72

	Introduction
	Motivation
	Overview
	Demos
	Challenges
	Nested Variable-Size Sets
	Object References
	Binding the Application UI to Data
	Mutations

	Data Model
	Features
	Concepts and Examples
	Formal Specification
	Data Schema
	Data Instance

	Formulas and Computation
	Concepts
	Computing With Sets: Examples
	Computation Semantics
	Type Checking
	Sheet Evaluation: Preliminaries
	The Sheet Monad and Derivations
	Related Work

	Family Evaluation
	The Evaluation Algorithm and Computability
	Dependency Tracking and Incremental Reevaluation
	Determinism and Catching of Cyclic Dependency Errors

	Application Views

	Transactions
	Experiments and Evaluation
	Prototype Implementation
	Overview of Example Applications
	Example Application: Hack-q
	User Study

	Related Work
	Conclusions and Future Work
	Bibliography

